摘要:
A low power vibration sensor and wireless transmitter system has one or more sensors that sense parameters of a machine including vibration and produces dynamic signals representing the sensed parameters. The system converts the signals to a digital format, digitally filters the signals, and processes the signals. A processor determines a plurality of levels, which represent the characteristics of the signal such as the peak value of a predetermined set of data points of the digital signal. Together, the levels comprise a PeakVue waveform. The processor determines the peak level value for the PeakVue waveform. Also, a true root-mean-square is calculated as the signal is received at the processor. The peak level and the RMS value are communicated wirelessly by a communication module to a control protocol network such as a daisy chain HART or Fieldbus protocol network. The system power supply and the communication module power supply are separate and allow for low power operation.
摘要:
A low power vibration sensor and wireless transmitter system has one or more sensors that sense parameters of a machine including vibration and produces dynamic signals representing the sensed parameters. The system converts the signals to a digital format, digitally filters the signals, and processes the signals. A processor determines a plurality of levels, which represent the characteristics of the signal such as the peak value of a predetermined set of data points of the digital signal. Together, the levels comprise a PeakVue waveform. The processor determines the peak level value for the PeakVue waveform. Also, a true root-mean-square is calculated as the signal is received at the processor. The peak level and the RMS value are communicated wirelessly by a communication module to a control protocol network such as a daisy chain HART or Fieldbus protocol network. The system power supply and the communication module power supply are separate and allow for low power operation.
摘要:
Single entities such as fibers are delivered one at a time to a fluid stream, and a nozzle orients the entities so that each entity along its length (major dimension) is generally parallel with the direction of fluid flow. The entity then enters a sample region and a sensor senses entity data such as the speed of the entity as it passes through the sample region. A preferred embodiment includes a collimated beam of light and two side-by-side photo detectors positioned to measure light extinction caused by fibers passing through the sample region. Another sensor may be provided to detect light scattered forward at an angle of about forty degrees (40.degree.). The sensor signals are used to generate data that corresponds to such parameters as length, fiber ribbon width, fineness, cross-sectional area, maturity, cross-sectional circularity, shape, surface roughness, etc. Optical filtering provides information about composition (natural or man-made) and appearance (color and polarization).
摘要:
A vibration data collection system performs an integration or differentiation process on incoming digitized vibration data in real time. The system uses a digital Infinite Impulse Response (IIR) filter running at the input data rate to provide the integration or differentiation function. With this approach, the system reduces hardware complexity and data storage requirements. Also, the system provides the ability to directly integrate or differentiate stored time waveforms without resorting to FFT processing methods.
摘要:
A vibration data collection system performs an integration or differentiation process on incoming digitized vibration data in real time. The system uses a digital Infinite Impulse Response (IIR) filter running at the input data rate to provide the integration or differentiation function. With this approach, the system reduces hardware complexity and data storage requirements. Also, the system provides the ability to directly integrate or differentiate stored time waveforms without resorting to FFT processing methods.
摘要:
An apparatus and method for monitoring and processing a web of textile materials which includes a plurality of entities including fibers, neps, seed coat fragments and trash. The web is monitored, preferably by an imaging unit, to produce a monitor signal. A computer receives the monitor signal and locates the position of entities of interest and controls a web processor in accordance with the location of the entities. Preferably, the web processor includes ejectors for ejecting entities from the web under the control of the computer. In one embodiment, the web is formed by a sampler and forming apparatus which removes a sample of fibers from a supply and reconfigures it into a desired configuration, such as a web, for being monitored.
摘要:
An apparatus for delooping fibers in a fluid flow preferably includes a cyclone for receiving entities from a fiber individualizer and delivering individual fibers to a sensor. The fluid flow rate to the cyclone is set to optimize operation of the individualizer and the flow rate from the cyclone is set to optimize operation of the sensor. A nozzle is provided in the sensor for mechanically delooping the fibers so they are sensed in a straight condition. In addition, electronics associated with the sensor detects sensor signals corresponding to looped fibers and electronically “deloops” the fibers to produce data, such as the actual length of a fiber that was presented to the sensor in a looped condition.
摘要:
An apparatus and method for measuring characteristics of entities in a sample of textile material, including trash, provides a sample of textile material to a processor where entities are individualized and thereafter transported to a sensor system. Characteristic signals are generated by the sensor signal corresponding to sensed characteristics of the entities, including trash, and a computer analyzes the characteristic signals to identify signals corresponding to trash and to classify the trash signals as corresponding to one of several types of trash. Based on the characteristic signals, the computer determines an entity length, diameter and speed and also determines a peak value of a characteristic signal corresponding to an entity. Based on these measurements, trash is characterized as to one of several types of trash.
摘要:
A testing apparatus includes a receiver for holding a plurality of textile samples and an automatic feed mechanism disposed adjacent to the receiver for selectively engaging and removing samples from the receiver and transporting them to a processor where the textile material is processed to produce textile entities in an individualized condition. The entities are then transported to a sensor that produces signals corresponding to characteristics of the entities. A control means detects the presence or absence of a sample in the automatic feed mechanism and controls it accordingly. Analog and digital components analyze the characteristic signals to identify segments of the characteristic signals that correspond to neps, trash and fibers.
摘要:
An apparatus and method for monitoring and processing a web of textile materials which includes a plurality of entities including fibers, neps, seed coat fragments and trash. The web is monitored, preferably by an imaging unit, to produce a monitor signal. A computer receives the monitor signal and locates the position of entities of interest and controls a web processor in accordance with the location of the entities. Preferably, the web processor includes ejectors for ejecting entities from the web under the control of the computer. In one embodiment, the web is formed by a sampler and forming apparatus which removes a sample of fibers from a supply and reconfigures it into a desired configuration, such as a web, for being monitored.