摘要:
A fiber instrument for measuring properties of a fiber sample, the fiber instrument having a surface for receiving the fiber sample, a hand for pressing the fiber sample against the surface, an illumination source for selectively illuminating the fiber sample with more than one peak wavelength, where each of the peak wavelengths is independently controllable as to an applied intensity of the peak wavelength, a sensor for capturing images of the fiber sample while it is illuminated, and a controller for controlling at least the sensor and the illumination source. By providing multiple peak wavelengths of illumination that are each independently controllable as to illumination intensity, the fiber instrument as described herein is better able to detect both foreign material within the fiber sample, and color gradations of the fiber sample.
摘要:
A method for standardizing a reading taken on a fiber sample, including the steps of measuring a moisture content of the fiber sample, taking the reading on the fiber sample, and correcting the reading to a standardized reading that adjusts for a difference between the reading at the measured moisture content of the fiber sample and a standardized reading at about 7.5% moisture content.
摘要:
A fiber classing device having a sample window for viewing a fiber sample. A light source provides light that is directed toward and reflected by the fiber sample, producing reflected light. A photo sensitive detector is positioned to receive the reflected light, and it detects lightness, redness, and yellowness of the fiber sample. Processing means assign a preliminary grade to the fiber sample based at least in part on the lightness and yellowness of the fiber sample. The processing means also selectively adjust the preliminary grade to a final grade based at least in part on the redness of the fiber sample. The photo sensitive detector has one or more of a spectrometer, a camera, or a set of three photo diodes. A first photo diode detects light with a wavelength of between about 505 nanometers and about 605 nanometers, corresponding to the lightness of the fiber sample. A second photo diode detects light with a wavelength of between about 430 nanometers and about 530 nanometers, corresponding to the yellowness of the fiber sample. The third photo diode detects light with a wavelength of between about 550 nanometers and about 650 nanometers, corresponding to the redness of the fiber sample. The processing means analyzes the information from the photo sensitive detector to determine the mean redness, variance in lightness, variance in redness, variance in yellowness, contrast in lightness, percent of yellow spots, and contrast in yellowness of the fiber sample. The selective adjustment from the preliminary grade to the final grade is based at least in part on these parameters.
摘要:
A gin process control system including sensing stations for sensing the physical properties of cotton as it progresses through a gin. A moisture sensor determines, over a wide range of values, the amount of moisture in the cotton. A quality monitor determines the color of the cotton, color distribution, and the amount and type of trash or other impurities which may be entrained in the cotton. A micronaire unit determines both micronaire and cotton maturity. A fiber length tester provides information on the length distribution, breaking strength, and elongation of the cotton fibers. Cotton samples are gathered from the gin flow stream and presented to the sensing stations in a variety of manual, semi-automated, and automated fashions. In a fully automated unit, the sensing stations are connected directly to the gin. The sensing stations are also in communication with the gin process control system, which uses the data from the sensing stations to automatically control the operation of the gin. Alternately, the sensing stations are assembled into a stand-alone unit. In a semi-automatic version of the stand-alone unit, samples are manually gathered and presented to the unit in cassettes for automated subsampling and testing by the sensing stations. In this semi-automatic version, the sensing stations may be in a configuration identical to that of the fully automatic, on-line unit. In a manual version of the stand-alone unit, the samples are manually gathered and manually placed into contact with the various sensing stations. The information reported by the stand-alone units can be used to manually control the operation of the gin.
摘要:
A gin process control system including sensing stations for sensing the physical properties of cotton as it progresses through a gin. A moisture sensor determines, over a wide range of values, the amount of moisture in the cotton. A quality monitor determines the color of the cotton, color distribution, and the amount and type of trash or other impurities which may be entrained in the cotton. A micronaire unit determines both micronaire and cotton maturity. A fiber length tester provides information on the length distribution, breaking strength, and elongation of the cotton fibers. Cotton samples are gathered from the gin flow stream and presented to the sensing stations in a variety of manual, semi-automated, and automated fashions. In a fully automated unit, the sensing stations are connected directly to the gin. The sensing stations are also in communication with the gin process control system, which uses the data from the sensing stations to automatically control the operation of the gin. Alternately, the sensing stations are assembled into a stand-alone unit. In a semi-automatic version of the stand-alone unit, samples are manually gathered and presented to the unit in cassettes for automated subsampling and testing by the sensing stations. In this semi-automatic version, the sensing stations may be in a configuration identical to that of the fully automatic, on-line unit. In a manual version of the stand-alone unit, the samples are manually gathered and manually placed into contact with the various sensing stations. The information reported by the stand-alone units can be used to manually control the operation of the gin.
摘要:
Method and Apparatus for measuring and classifying individual neplike entities in a textile fiber sample is disclosed. The apparatus includes a fiber sample processor which takes a supply of fiber samples, separates and individualizes the individual entities of the fiber sample and provides the individualized entities to an airflow. The airflow directs the entities through a sensor volume which utilizes electro optical sensors to generate characteristic signals corresponding to the entity passing through the sensor volume. These signals are then analyzed to determine if the entity passing through the sensing volume was a nep and further classify neps by their type. Thus, a neplike entity could be classified as either a polyester nep, a fiber nep or a seed coat fragment and further may be classified as a mature entity or an immature entity.
摘要:
An apparatus for delooping fibers in a fluid flow preferably includes a cyclone for receiving entities from a fiber individualizer and delivering individual fibers to a sensor. The fluid flow rate to the cyclone is set to optimize operation of the individualizer and the flow rate from the cyclone is set to optimize operation of the sensor. A nozzle is provided in the sensor for mechanically delooping the fibers so they are sensed in a straight condition. In addition, electronics associated with the sensor detects sensor signals corresponding to looped fibers and electronically "deloops" the fibers to produce data, such as the actual length of a fiber that was presented to the sensor in a looped condition.
摘要:
An apparatus for monitoring trash in a sample of trash particles and fibers includes scales for determining the weight of the sample which is transmitted to a computer. The sample is presented to a sensing volume and an optical sensor produces an output signal corresponding at least to the presence of the trash particle in the sensing volume. In one embodiment, the output signal is the waveform corresponding to light extinction caused by the presence of the particle in the sensing volume. In a second embodiment, image analysis of trash particles in a sensing volume provide output signals corresponding to the size, shape or composition of the particles. The computer receives the weight data and the output signal from the optical sensor and produces output data in the form of a count of at least a portion of the trash particles per unit weight of sample. The computer also outputs data in the form of or corresponding to the effective diameter, projected area and weight of the trash particles and count and weight of the fibers. In particular, the computer categorizes trash particles and outputs data for a particular category of particles.
摘要:
A fiber testing instrument having a fiber loading station that is sized to accommodate a fiber sample within a desired size range, a fiber extraction device for extracting a portion of the fiber sample for a first battery of fiber tests, a fiber transport device for conveying at least the remaining portion of the fiber sample, and a micronaire chamber for receiving the conveyed fiber sample, where the micronaire chamber is sized to test any fiber sample within the desired size range.
摘要:
A method for measuring the weight of impurities in a mixed volume of fibers and impurities by mechanically separating the impurities are from the fibers, whereupon some undesired fibers still remain admixed to the impurities due to imperfections of the mechanical separation. A total weight of the separated impurities and the undesired fibers is gravimetrically measured. An image of the separated impurities and the undesired fibers is created. A weight of the undesired fibers is estimated from the image. The estimated weight of the undesired fibers is subtracted from the total weight to yield a corrected weight of the impurities. The mechanical separation and the subsequent electronic correction yield a more accurate weight of the impurities.