Abstract:
An apparatus and method for lubricating a wheel having a predetermined wheel diameter and width includes a lubricating head for encircling the wheel to be lubricated. First and second lubricating rings are supported on the head. The first and second rings have a common axis and are spaced apart an axial distance from one another complementary with respect to the predetermined width of the wheel to be lubricated. Each of the first and second rings has a diameter greater than the predetermined diameter of the wheel to be lubricated. A mechanism is provided for driving the wheel to be lubricated into operable engagement with the first and second rings of the head, such that the first and second rings of the head operably engage along an entire periphery with respect to the first and second rims of the wheel. Preferably, the mechanism rotates the wheel through at least 360.degree. while in engagement with the first and second rings of the lubricating head to apply lubricant to an entire periphery of the first and second rims of the wheel.
Abstract:
An apparatus and method for mounting a valve stem to the rim of a vehicle wheel includes locating apparatus that determines the location of an aperture on the wheel rim for receiving the valve stem, the locating apparatus preferably including a machine vision system at a gauging station. A programmable, robotic manipulator capable of compound, multi-axial movement and capable of engaging the valve stem is controlled by a controller to engage a valve stem, move the valve stem to the aperture in the wheel rim, coaxially align the central axis of the aperture with the longitudinal axis of the valve stem, and insert the valve stem through the aperture along the aligned central and longitudinal axes. Optionally, the robotic manipulator may include a nut runner to tighten a nut over the valve stem. Alternately, the gauging station may include a rotating table to rotate the vehicle wheel and an optical sensor for detecting the location of the aperture for the valve stem. Preferably, the machine vision system is a video camera that can identify the wheel rim as being one of a plurality of different types of wheel rims and verify the location of the valve stem receiving aperture on the wheel rim. Optionally, a mechanical probe may be inserted into the valve stem receiving aperture to verify the location of the aperture before insertion of the valve stem.
Abstract:
In an automated method for mounting a valve stem to the rim of an automotive vehicle wheel, rims are supplied in series by a conveyor to a gauging station where the location and alignment of a hole for receiving the valve stem is determined by a machine vision system. An electronic control system directs a robotic manipulator to grasp the rim, move it to a mounting station where a valve stem is retained, position the rim such that the hole is in alignment with the valve stem, and urge the rim toward the valve stem to insert the valve stem through the hole in the rim. If necessary, a power-actuated nut runner, mounted on the robotic manipulator or adjacent the mounting station, is used to tighten a nut over the valve stem to secure. As an alternative to the machine vision system, the gauging station may utilize a rotating table which rotates the wheel about its central axis, and an “electric eye” optical sensor which directs a beam of infrared light onto the rim. As the rim rotates through the beam, the presence or lack of a reflection of the light beam is used to detect the location of the hole, and rotation of the table is stopped when the hole is in alignment with the beam. A probe mounted on the gauging station may be extended to project into the hole to confirm that the hole is at the desired position and reposition the rim slightly to provide a precise positioning of the hole.
Abstract:
An apparatus for inflating a tire mounted on a rim can include a conveyor for transporting a tire mounted on a rim to a predetermined position at a tire inflating work station. The conveyor can include carrier surfaces spaced laterally with respect to one another along a path of travel for engaging the tire and rim for transport. The carrier surfaces are moveable along the path of travel and moveable vertically between a raised transport position and a lowered transfer position. A support surface at the tire inflating workstation has at least two portions. The portions include at least one interlocking joint for holding the portions of the support surface in sealing engagement with respect to one another during an inflation process. An apparatus for inflating a tire mounted on a rim can include a reciprocal inflation head moveable from a first position spaced from the tire to a second position engagable with the side wall of the tire for communicating pressurized fluid to inflate the tire on the rim. At least two concentric seals are selectively moveable with respect to one another to bring at least one seal into sealing engagement with a side wall of the tire to be inflated. A mechanism for moving at least one seal with respect to the other seal is provided for selectively presenting one seal in operable position for engaging a side wall of the tire to be inflated.
Abstract:
An apparatus and method for mounting a valve stem to the rim of an automotive vehicle wheel includes rims being supplied in series by a conveyor to a gauging station where the type and/or size of the rim and the location and alignment of an aperture for receiving the valve stem is determined by a machine vision system. An electronic control system directs a robotic manipulator to grasp either the valve stem or the rim, move the valve stem or the rim to a mounting station, position the valve stem or the rim with respect to the other such that the aperture in the rim is in coaxial alignment with the valve stem, and insert the valve stem through the aperture in the rim. If necessary, a power-actuated nut runner, mounted on the robotic manipulator or adjacent the mounting station, is used to tighten a nut over the valve stem. As an alternative to the machine vision system, the gauging station can use a rotating table which rotates the wheel about a central axis, and an “electric eye” optical sensor directing a beam of infrared light onto the rim. As the rim rotates through the beam, the presence or lack of a reflection of the light beam is used to detect the location of the aperture, and rotation of the table is stopped when the aperture is in alignment with the beam. A probe mounted on the gauging station can be extended to project into the aperture to confirm that the aperture is at the desired position and reposition the rim slightly to provide a precise positioning of the aperture.
Abstract:
A tire mounting apparatus for mounting a flexible tire on a rim includes a robot having at least one articulated joint and a wrist. The robot is moveable with at least three degrees of freedom along a selectable one of a plurality of programmable predetermined paths. A central processing unit selectively executes any one of the plurality of paths stored in memory. A bead mounting tool is attachable to the wrist of the robot for movement along the selected one of the plurality of programmable predetermined paths of the robot. The tool is orientatable with at least three degrees of freedom independent of the selected one of the plurality of programmable predetermined paths. A workpiece support positions the rim in a predetermined location with respect to the robot and positions the tire in a predetermined orientation with respect to the rim. A signal is generated and sent to the robot corresponding to a size of the rim and tire combination to be assembled. The central processing unit selects one of the plurality of predetermined paths corresponding to the rim and tire size combination. The robot includes one or more sensors for measuring load on the articulated joint arid wrist during a tire mounting cycle. The control program includes a sensor monitoring function for stopping movement of the tool in response to a load greater than a predetermined value. A clamp member prevents rotation of the tire with respect to the rim as the tool works a bead of the tire over the rim.
Abstract:
An apparatus for inflating a tire mounted on a rim can include a conveyor for transporting a tire mounted on a rim to a predetermined position at a tire inflating work station. The conveyor can include carrier surfaces spaced laterally with respect to one another along a path of travel for engaging the tire and rim for transport. The carrier surfaces are moveable along the path of travel and moveable vertically between a raised transport position and a lowered transfer position. A support surface at the tire inflating workstation has at least two portions. The portions include at least one interlocking joint for holding the portions of the support surface in sealing engagement with respect to one another during an inflation process. An apparatus for inflating a tire mounted on a rim can include a reciprocal inflation head moveable from a first position spaced from the tire to a second position engagable with the side wall of the tire for communicating pressurized fluid to inflate the tire on the rim. At least two concentric seals are selectively moveable with respect to one another to bring at least one seal into sealing engagement with a side wall of the tire to be inflated. A mechanism for moving at least one seal with respect to the other seal is provided for selectively presenting one seal in operable position for engaging a side wall of the tire to be inflated.
Abstract:
A tire mounting apparatus for mounting a flexible tire on a rim includes a robot having at least one articulated joint and a wrist. The robot is moveable with at least three degrees of freedom along a selectable one of a plurality of programmable predetermined paths. A central processing unit selectively executes any one of the plurality of paths stored in memory. A bead mounting tool is attachable to the wrist of the robot for movement along the selected one of the plurality of programmable predetermined paths of the robot. The tool is orientatable with at least three degrees of freedom independent of the selected one of the plurality of programmable predetermined paths. A workpiece support positions the rim in a predetermined location with respect to the robot and positions the tire in a predetermined orientation with respect to the rim. A signal is generated and sent to the robot corresponding to a size of the rim and tire combination to be assembled. The central processing unit selects one of the plurality of predetermined paths corresponding to the rim and tire size combination. The robot includes one or more sensors for measuring load on the articulated joint and wrist during a tire mounting cycle. The control program includes a sensor monitoring function for stopping movement of the tool in response to a load greater than a predetermined value. A clamp member prevents rotation of the tire with respect to the rim as the tool works a bead of the tire over the rim
Abstract:
An apparatus and method is disclosed for lubricating the spaced apart beads of a pneumatic tire prior to mounting of the tire on a wheel. A conveyor is provided for moving the tires having different outside diameters, axial widths, and central opening diameters fed in random succession along a fixed path through a lubrication station. An interceptor is positioned in proximity to the station and is moveable between a first position where tires delivered to the station by the conveyor move freely through the station, and a second position where tires delivered to the station by the conveyor engage the interceptor to stop the tires on the conveyor at the station. The interceptor stops successive tires of varying sizes to perform a lubrication operation on the tires of varying sizes when intermixed on the conveyor in random order. The interceptor is selectively moveable between the first and second position. At least one longitudinally extending, lubricating member is provided having a first axis. The lubricating member is rotatable about an axis of rotation offset from the first axis, such that a distance between the axis of rotation and the first axis is at least as great as a radius as the central opening diameter of the largest tire to be lubricated.
Abstract:
A tire mounting apparatus for mounting a flexible tire on a rim includes a robot having at least one articulated joint and a wrist. The robot is moveable with at least three degrees of freedom along a selectable one of a plurality of programmable predetermined paths. A central processing unit selectively executes any one of the plurality of paths stored in memory. A bead mounting tool is attachable to the wrist of the robot for movement along the selected one of the plurality of programmable predetermined paths of the robot. The tool is orientatable with at least three degrees of freedom independent of the selected one of the plurality of programmable predetermined paths. A workpiece support positions the rim in a predetermined location with respect to the robot and positions the tire in a predetermined orientation with respect to the rim. A signal is generated and sent to the robot corresponding to a size of the rim and tire combination to be assembled. The central processing unit selects one of the plurality of predetermined paths corresponding to the rim and tire size combination. The robot includes one or more sensors for measuring load on the articulated joint and wrist during a tire mounting cycle. The control program includes a sensor monitoring function for stopping movement of the tool in response to a load greater than a predetermined value. A clamp member prevents rotation of the tire with respect to the rim as the tool works a bead of the tire over the rim.