Abstract:
In an embodiment, a user equipment (UE) receives request to set-up a communication session of a given type while the UE is in a dormant state (e.g., URA_PCH or CELL_PCH). The UE configures a state transition request message (e.g., a cell update message) (i) to request that an access network transition the UE from the dormant state to a target state (e.g., CELL_FACH or CELL_DCH) and to obtain a network-assigned serving cell-specific identifier (e.g., C-RNTI) for exchanging data between the UE and the serving cell in association with the communication session of the given type and (ii) to indicate the given type of the communication session. The UE transmits the state transition request message to the access network, and the access network determines the given type of the communication session based on the state transition request message.
Abstract:
In an embodiment, a user of a wireless communications device (WCD) is notified when operating in a serving area of a FEMTO access point (AP). In another embodiment, the WCD can notify an application server (AS) that the WCD is served by the FEMTO AP. In another embodiment, the AS can set a service level for a server-arbitrated communication session (CS) based on the FEMTO AP serving status of participating WCDs. In another embodiment, the FEMTO AP can determine to use a downlink control or signaling channel to transmit data to the WCD. In another embodiment, based on its serving FEMTO AP status, the WCD can (i) modify its participation level in the CS and/or (ii) selectively track usage. In another embodiment, the WCD or FEMTO AP can measure performance parameters of the CS to determine whether to trigger a handoff of the WCD to a different AP.
Abstract:
In an embodiment, a UE determines to transmit a message (e.g., an alert message, a call initiation message). Based on the type of the message to be transmitted, the UE selectively transmits supplemental data configured to prompt an access network to transition the UE to a dedicated channel state (DCS). In another embodiment, an application server configured to arbitrate communication sessions between UEs receives a message for transmission to a target UE. Based on the type of the message to be transmitted to the target UE, the application server selectively transmits, to a serving access network of the target UE, supplemental data configured to prompt the serving access network to transition the target UE to the DCS. In another embodiment, the access network selectively transitions a target UE to the DCS based on whether differently sized messages are received at the access network for transmission to the target UE.
Abstract:
Apparatus and methods for payload adaptation for a mobile device based on a request from the mobile device include determining a communication connection characteristic of the request and obtaining one or more results to generate obtained results responsive to the request. The apparatus and methods further include customizing the obtained results to generate customized results based on the communication connection characteristic and transmitting the customized results to the mobile device.
Abstract:
In an embodiment, a user of a wireless communications device (WCD) is notified when operating in a serving area of a FEMTO access point (AP). In another embodiment, the WCD can notify an application server (AS) that the WCD is served by the FEMTO AP. In another embodiment, the AS can set a service level for a server-arbitrated communication session (CS) based on the FEMTO AP serving status of participating WCDs. In another embodiment, the FEMTO AP can determine to use a downlink control or signaling channel to transmit data to the WCD. In another embodiment, based on its serving FEMTO AP status, the WCD can (i) modify its participation level in the CS and/or (ii) selectively track usage. In another embodiment, the WCD or FEMTO AP can measure performance parameters of the CS to determine whether to trigger a handoff of the WCD to a different AP.
Abstract:
This disclosure provides systems, devices, apparatus, and methods, including computer programs encoded on storage media, for protocol stacks and bearer modeling for assisted Uu connectivity. A UE and a PN may each establish a first connection with an AN and, based on the first connections with the AN, establish a second connection with each other. Based on a bearer configuration, the UE may determine whether to route data to the PN via the first connection with the AN or directly to the PN via the second connection with the PN. Accordingly, the UE may transmit the data to at least one of the AN or the PN based on the determination of whether to route the data to the PN via the first connection with the AN or directly to the PN via the second connection with the PN.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may determine to transmit a pre-allocated uplink (UL) grant to a user equipment (UE), wherein the pre-allocated UL grant includes: a secondary node (SN) transmission configuration indicator (TCI) list, and a type 1 configured grant (CG). The base station may transmit, to the UE, the pre-allocated UL grant based at least in part on determining to transmit the pre-allocated UL grant. Numerous other aspects are provided.
Abstract:
In an embodiment, a UE determines to transmit a message (e.g., an alert message, a call initiation message). Based on the type of the message to be transmitted, the UE selectively transmits supplemental data configured to prompt an access network to transition the UE to a dedicated channel state (DCS). In another embodiment, an application server configured to arbitrate communication sessions between UEs receives a message for transmission to a target UE. Based on the type of the message to be transmitted to the target UE, the application server selectively transmits, to a serving access network of the target UE, supplemental data configured to prompt the serving access network to transition the target UE to the DCS. In another embodiment, the access network selectively transitions a target UE to the DCS based on whether differently sized messages are received at the access network for transmission to the target UE.