摘要:
Separation of a high temperature (e.g., 300.degree.-1200.degree. C.) and high pressure (e.g., 2-20 bar) solids-gas stream from a pressurized fluidized bed reactor into solids and gas while reducing the pressure of both the gas and solids takes place in a vertical de-entrainment vessel having a packed bed of solids within it. The possibility of fluidization of the solids is minimized by causing the velocity of the gas component of the solids-gas stream to be reduced during, or just prior to, introduction of the gas into the packed bed of solids, e.g., by providing an expanding conical end to the inlet for the solids-gas stream into the vessel. A gas permeable solids impermeable element may also or alternatively be connected to the inlet and extend toward (optionally all the way to) the side wall of the vessel, to substantially prevent fluidization. The fluidization-preventing element may be a perforated plate, ceramic filter, or wire mesh screen, and may have gradually increasing gas permeability from the inlet to the vessel side wall. At least one inlet flows to the vessel, and at least one separated gas and solids outlet leads from the vessel to a low (e.g., atmospheric) pressure area.
摘要:
A filter assembly for high temperature gases, such as from a circulating fluidized bed reactor, mounts monolithic ceramic filter elements within an upright vessel so that as the hot gas flows from the top toward the bottom of the vessel the gas passes through the elements with the clean gas discharged through a side wall of the vessel. The particle discharge is provided at the bottom of the vessel. Filter supporting elements within the vessel are cooled by cooling fluid, and pulse cleaning elements are associated with each of the filter elements. Flow directing elements within the vessel typically define a generally conical or pyramidal shaped flow directing surface. The flow directing elements may be refractory material bodies, or funnel shaped thin elements (e.g. of metal capable of withstanding high temperature), and may be mounted so that small amounts of movement are possible to accommodate thermal contraction or expansion.
摘要:
An apparatus is provided for ensuring that a device--such as a gas turbine--that utilizes gases and will be damaged by particles in the gases greater than the predetermined size, will not be subjected to such particles. A filter, or the like removes particles from the gases, and is connected to the gas utilization device, with a particle concentrating device disposed between the particle remover and turbine. A particle detector is associated with the particle concentrator for detecting an undesirable level of particles above the predetermined size, and an alarm or other device is activated by the particle detecting means in response to an aberrant condition. The particle concentrator comprises a first conduit extending to a branch section, and branching to a second conduit and a third conduit. The second conduit, which may be blind, is a substantial continuation of the first conduit, while the third conduit makes an angle (e.g. about 90.degree.) with respect to the second conduit that is large enough that the vast majority of particles in the first conduit having a size greater than the predetermined size will flow into the second conduit, while gas and smaller particles will flow into the third conduit. The detector may be signal transmitter and receiver, an impact force sensing device, or a filter in the second conduit with a differential pressure sensor for sensing the pressure difference on opposite sides of the filter.
摘要:
Separation of a high temperature (e.g., 300.degree.-1200.degree. C.) and high pressure (e.g., 2-20 bar) solids-gas stream from a pressurized fluidized bed reactor into solids and gas while reducing the pressure of both the gas and solids takes place in a vertical de-entrainment vessel having a packed bed of solids within it. The possibility of fluidization of the solids is minimized by causing the velocity of the gas component of the solids-gas stream to be reduced during, or just prior to, introduction of the gas into the packed bed of solids, e.g., by providing an expanding conical end to the inlet for the solids-gas stream into the vessel. A gas permeable solids impermeable element may also or alternatively be connected to the inlet and extend toward (optionally all the way to) the side wall of the vessel, to substantially prevent fluidization. The fluidization-preventing element may be a perforated plate, ceramic filter, or wire mesh screen, and may have gradually increasing gas permeability from the inlet to the vessel side wall. A plurality of inlets flow into the vessel, and at least one separated gas and solids outlets leads from the vessel to a low (e.g., atmospheric) pressure area.
摘要:
Hot flue or process gases are cleaned utilizing an apparatus containing a barrier filter module formed of a monolithic ceramic support structure coated with a thin porous ceramic layer having a pore size of about 0.04-0.5 microns, and a catalyst module formed of a support structure coated with catalyst. The hot flue gases may be associated with a fluidized bed boiler plant, such as a circulating fluidized bed reactor. Gases to be cleaned are passed through the barrier filter module into contact with the thin porous ceramic layer, and then through the catalyst module so that there is a catalytic reaction with the gas.
摘要:
Particulate material is separated from high temperature gas using a number of elongated porous walled tubular filter elements. The dirty sides of the filter elements are operatively connected to a dirty gas inlet to an upright vessel, while the clean side of the filter element is in operative association with a clean gas outlet. A separated particle outlet extends from the bottom of the vessel. Cleaning of the filter elements takes place by a pulse of high pressure cleansing gas which is supplied to the clean side of the filters. In order to prevent thermal shock or mechanical damage to the filters, especially since the cleansing gas is of a lower temperature than the gas being filtered, the volume of cleansing gas is positively controlled. This is accomplished by placing a restrictor (e.g. orifice or nozzle) between the high pressure source of cleansing gas and a reservoir having a volume sufficient to effect cleansing, but insufficient to cause thermal shock. A conduit, with a quick acting valve in the conduit, extends from the reservoir to the clean side of the filter elements. Even if the valve sticks open, there is insufficient volume and/or flow rate of cleansing gas to cause thermal shock to the filters.