摘要:
This invention is an oxynitride film forming method including: a reaction chamber heating step of heating a reaction chamber to a predetermined temperature, the reaction chamber containing an object to be processed; a gas heating step of heating a process gas to a temperature not lower than a reaction temperature at which an oxynitride film can be formed, the process gas consisting of dinitrogen oxide gas; and a film forming step of forming an oxynitride film on the object to be processed by supplying the heated process gas into the heated processing chamber. The temperature to which the reaction chamber is heated in the reaction chamber heating step is set at a temperature below a temperature at which the process gas undergoes a reaction.
摘要:
A vertical processing unit 10 for semiconductor wafers has; a cylindrical processing chamber 2 having an opening 18 in an inside of an annular bottom surface, and a disk-shaped cap 6 having an annular abutting-surface 32 abutting on the annular bottom surface of the chamber. A mounting-surface 6p formed on the inside of the annular abutting-surface 32. A wafer-boat 8 for holding a wafer W to be processed is mounted on the mounting-surface 6p of the cap 6. The abutting-surface 32 has an annular groove 34A formed therein. An inert gas supply passgeway 38 is provided in communication with the annular groove 34A for supplying an inert gas into the annular groove 34A through a header 16. An ejection opening 36 for ejecting an inert gas is provided on the inner side of the annular groove 34A for communicating the annular groove 34A and the interior of the processing chamber 2. Owing to the active leaking of the nitrogen (N.sub.2) gas into the interior of the processing chamber 2 through the ejection opening 36, the corrosive gas as a processing gas in the processing chamber 2 does not leak out, so that corrosion or rusting of the equipment around the processing chamber 2 is prevented.
摘要:
A boat includes a boat body, a top plate mounted on one end and a bottom plate mounted on the other end of the boat body. The boat body has a prop section and the prop section has a plurality of support portions provided parallel to each other along its longitudinal direction and each having a substantially circular arc-like configuration. The support portion has an opening at a front side to allow the forward end of an arm to be entered into an inside of the support portion to transfer a wafer W. Another opening is provided in a back section of a prop section at an area corresponding to the opening to allow the forward end of the arm to extend through it. The support portion supports the wafer W with the wafer edge portion set on its rest surface. The support portion and its rest surface are so formed as to have a substantially circular arc-configuration. By doing so, the rest surface of the support portion supports the wafer edge portion over as greater a length as possible. The rest surface of the support portion has its flatness set to be not more than 0.1 mm. When the wafer W is placed on the rest surface, the rear surface of the wafer edge portion is set substantially in face contact with the rest surface of the support portion.
摘要:
A method for using a heat processing apparatus of a batch type includes performing a preparatory process for removing aluminum present as a metal impurity from a quartz inner surface of a process container, and performing a main heat process on product substrates held on a holder member in the process container after the preparatory process. The preparatory process includes placing a plurality of dummy substrates for allowing the metal impurity to be deposited thereon inside a process container with no product substrates placed therein; then, supplying a chlorine-containing gas and water vapor into the process container and heating the quartz inner surface of the process container at a process temperature, thereby applying a baking process onto the quartz inner surface to discharge the metal impurity from the quartz inner surface and deposit the metal impurity onto the dummy substrates; and then, unloading the dummy substrates with the metal impurity deposited thereon from the reaction container.