Abstract:
An electronic apparatus, such as a disk apparatus, has a plurality of electronic units such as magnetic head-disk units and at least one power source unit for supplying power to the electronic units. The arrangement of the electronic apparatus is such that, on a frame of the apparatus, the plurality of electronic units are vertically arranged in such a manner as to form a first arrangement system, while the at least one power source unit is arranged in such a manner as to form a second arrangement system above the first arrangement system. The apparatus has an air flow passage for causing cooling air to flow from a lower portion of the electronic apparatus to the inside thereof, pass through the first arrangement system, thereby pass through the second arrangement system, and then be discharged to the outside of the apparatus. This arrangement enables cooling air to flow in a simplified manner, which in turn enhances the cooling efficiency, and also enables electrically connecting cables to be arranged in a simple wiring system.
Abstract:
Because of increase in data recording density on a magnetic disk in recent years, a minute defect which posed no problem in the past exerts adverse influence upon the recording and reproducing characteristics. An object of the present invention is to provide a method and an apparatus for detecting minute defects on a magnetic disk. In order to achieve this object, the present invention was made on the basis of the recognition that a large defect on the magnetic disk largely decreases the amplitude of the reproduced signal and shifts its phase, whereas a small defect does not decrease the amplitude of the reproduced signal so largely but causes a phase shift. Therefore, defects on the magnetic disk are detected by monitoring the amplitude decrease and phase shift of the reproduced signal.
Abstract:
A magnetic head loading apparatus serves to load a magnetic head on the surface of a disc-shaped magnetic recording medium rotating continuously so as to perform the recording and reproduction of data. The magnetic head is shifted from unload to load position by means of a drive means. In order to prevent damage to the recording medium due to the collision of the magnetic head with the recording medium, the drive means is so controlled as to cause the magnetic head to decellerate as the magnetic head approaches the load position.
Abstract:
A magnetic disk drive has a housing for a 3.5 inch form factor and disk media of a diameter for a 2.5 inch form factor. The smaller disk media rotate at a high speed while consuming low electric lower and generating less heat while providing for quick access speeds. Usually, when the magnetic disk media are rotated at a higher speed, the electric power consumption and heat generation are increased because of the load increase. This problem is avoided with the use of cooling fins placed about the periphery of the disk media. Further, the smaller size disk media enable a decrease in torque loss during on-load rotation with the media, and a decrease of electric current to the spindle motor during rotation.
Abstract:
A magnetic disc apparatus has a large recording density of 120 megabits per square inch or more, and defines a relationship among a pole thickness (Pt) of thin-film magnetic heads disposed in the magnetic disc apparatus, and a saturation flux density (Bs) of cores of the heads and a recording wavelength (.lambda.) for the thin film magnetic discs have a coercivity of 1800 Oe or more, wherein a levitation space between the head and the disc is 0.15 .mu.m or less.
Abstract:
A semiconductor storage device transfers data with an information processing device and includes a non-volatile semiconductor memory in which data is electrically re-writable, a volatile semiconductor memory connected to the non-volatile memory and temporarily storing data of the non-volatile semiconductor memory, and a CPU connected to the volatile semiconductor memory and the non-volatile semiconductor memory. The CPU controls the transfer of data among the non-volatile memory, the volatile memory and the CPU. The CPU also transfers data with the information processing device in accordance with a fixed-length form for data. When an access from the CPU to the volatile semiconductor makes a miss hit (i.e., misses), the CPU accesses the non-volatile semiconductor memory. When a failure is generated in the non-volatile semiconductor memory or when a predicted service life of the non-volatile semiconductor memory is elapsed, the non-volatile semiconductor memory can be substituted by an alternate memory.
Abstract:
A magnetic disk apparatus includes a base coupled to a supporting frame by means of a damping member so that the vibration caused by the operation of the internal actuator subsides. The damping member may include an adhesive resilient material disposed between the base and the supporting frame.
Abstract:
The write data is entered from the upper unit into a nonvolatile cache provided in a controller inside of each disk unit through a channel adaptor, a cache shared by each disk, and a disk adaptor. The data from the cache is compressed by the data compressing and restoring device and is written in the disk. At a time, the management information for compressed data is written in the cache and the disk as well. In case of breaking the management information of the cache when a failure takes place in the cache memory, the management information is written for each disk. Hence, the breakage does not have an adverse effect on the other disks. If the management information of the cache is broken, the management information given into the disk may be replaced with the broken information.
Abstract:
A housing for an information recording and reproducing apparatus is adapted for increased storage capacity and an increased operating speed by placing a relatively larger number of relatively smaller magnetic disks each having a relatively smaller mass and a relatively smaller recording and reproducing surface in an enclosure and housing the enclosure for a relatively larger magnetic disc in a box-like frame. A shock absorbing device is disposed between the enclosure and the box-like frame to absorb shock. A circuit assembly for controlling the operation of recording and reproducing is disposed outside the enclosure and between the frame and the enclosure.