Abstract:
An image processing apparatus (1) according to the present invention includes a layer combining unit (11a) that generates a print image based on print data including a plurality of layers, a determining unit (11b) that determines whether objects included in different layers overlap each other in a single pixel constituting the print image, and a selecting unit (11c) that selects image processing to be performed with respect to the single pixel according to a combination of attribute information for each of the layers assigned to the single pixel, when the objects overlap each other in the corresponding single pixel.
Abstract:
Disclosed is a transistor structure including: a first thin film transistor including, a first gate electrode; a first insulating film which covers the first gate electrode; and a first semiconductor film formed on the first insulating film in a position corresponding to the first gate electrode; and a second thin film transistor including, a second semiconductor film formed on the first insulating film; a second insulating film which covers the second semiconductor film; and a second gate electrode formed in a position corresponding to a channel portion of the second semiconductor film on the second insulating film, wherein the first semiconductor film and the second semiconductor film include a first portion on the first insulating film side and a second portion on the opposite surface side, and one of the first portion or the second portion has a higher degree of crystallization of silicon compared to the other.
Abstract:
The invention provides a system and method for monitoring the molten state of electric-resistance-welded pipe on-line. In the system, a mirror provided at a front end side inside a container receives light emitted by the welded parts of the tube-shaped steel strip through heat resistant glass from the side direction and reflects the image in the direction of a relay lens provided at a base end side of a relay lens unit. The relay lenses relay the image to a conversion lens, which forms the image on the imaging area of a CCD camera. Therefore, it is possible to capture the welded parts from the side direction by a resolution in accordance with the resolution of the CCD camera and possible to obtain information of the welded parts more accurately than in the past and on-line.
Abstract:
In IC-tagged printed matter 200, image data is printed on IC-tagged paper and the image data of the printed image is stored in the IC tag. MFP 100C makes a judgment whether the document set by ADF 141 is an IC-tagged printed mater or not by means of IC tag reader 143A, reads out the image data from the IC tag of the document on the ADF by means of IC tag reader 143A without transporting the document, and prints it on conventional paper or IC-tagged printing paper by means of printing unit 151, when it is the IC-tagged printed matter. If it is to be printed on IC-tagged printing paper, it writes the printed image data on the IC tag of said IC-tagged printing paper by means of IC tag writer 152 simultaneously. Thus, high quality copies in which the attribute information of the printed matter is reflected can be obtained from the electronically tagged printed mater.
Abstract:
Disclosed is a method of manufacturing a semiconductor device including: forming a photothermal conversion layer in a second area where a semiconductor layer is formed other than a first area where line is formed; and heating the semiconductor layer with the photothermal conversion layer by irradiating light on the first area and the second area.
Abstract:
This invention provides a steel pipe material weld zone heating method and apparatus for melting and welding the weld zone of a steel pipe material that during continuous induction heating and welding of moving steel pipe material as the material being heated controls temperature distribution and molten steel shape and weld frequency fluctuation with high accuracy and high efficiency, irrespective of the shape of the heated region of material being heated or the material properties of the material being heated, which comprises a first imaging step in which first imaging means 3 installed opposite an end face weld zone of the steel pipe material is used to detect self-emitted light of the weld zone and output a brightness image, a weld zone temperature distribution computation step in which image processing is performed based on the brightness image and emitted light temperature measurement is applied to compute the plate-thickness direction temperature distribution of the weld zone, a heating control step in which a criterion defined in advance for the relationship between alternating current frequency and plate-thickness direction temperature distribution is used to determine the frequency of the alternating current based on the plate-thickness direction temperature distribution, and a step in which the variable frequency alternating current power supply 1 is used to pass through the steel pipe material 10 alternating current of the frequency determined in the heating control step.
Abstract:
A device identifies the finishing location on a recording medium and also identifies the electronic tag location on the recording medium when a finishing instruction is included in a job. Moreover, when the finishing location matches with the electronic tag location, the device displays that the locations overlap with each other.
Abstract:
In IC-tagged printed matter 200, image data is printed on IC-tagged paper and the image data of the printed image is stored in the IC tag. MFP 100C makes a judgment whether the document set by ADF 141 is an IC-tagged printed mater or not by means of IC tag reader 143A, reads out the image data from the IC tag of the document on the ADF by means of IC tag reader 143A without transporting the document, and prints it on conventional paper or IC-tagged printing paper by means of printing unit 151, when it is the IC-tagged printed matter. If it is to be printed on IC-tagged printing paper, it writes the printed image data on the IC tag of said IC-tagged printing paper by means of IC tag writer 152 simultaneously. Thus, high quality copies in which the attribute information of the printed matter is reflected can be obtained from the electronically tagged printed mater.
Abstract:
An image pickup apparatus and a method for processing images are provided whereby it is possible to register a plurality of mask patterns, to select a desired one among the plurality of registered mask patterns, and to cut-out a desired part of a taken image by using the selected mask pattern to synthesize a new image, which is stored. In addition, it is also possible to extract a part of an image or the whole of an image of a stored taken image to be registered as a mask pattern.
Abstract:
A digital camera comprises a pick-up image data memory for storing pick-up image data by a couple charged device (CCD), a title message table for storing a plurality of title message data to be superimposed over the pick-up image data and a plate table for storing a plurality of plate image data to be overwritten the title message data and a central processing unit (CPU). The CPU overwrites the title message data stored in the title message table on the plate image data stored in the plate table and superimposed the title message data with the plate image data over the pick-up image data stored in the pick-up data memory. Further, the CPU stored the superimposed pick-up image data in the pick-up image memory so that the superimposed image data can be reproduced following the original pick-up image data.