Abstract:
A method for temporarily protecting a hard surface by selecting a surface, applying a dose of liquid solution on the selected surface, waiting for the dose of liquid solution to solidify into a sheet, and removing the sheet from the surface. At least one dose of liquid solution is stored in a solid form in a container, and the sheet of solidified material can be removed by peeling.
Abstract:
An apparatus for making a biocompatible three-dimensional object including at least one delivery unit arranged to deliver at least one biocompatible fluid substance towards a support body having a matrix surface to obtain a coating layer of a predetermined thickness configured for coating the matrix surface. Furthermore, a handling unit is provided arranged to provide a relative movement according to at least 3 degrees of freedom between the support body and each delivery unit. The support body is arranged to be coated by the delivered biocompatible fluid substance, in order to obtain a three-dimensional object having an object surface copying the matrix surface of the support body.
Abstract:
A method and a device for producing a thin article or a thin coating on a previously manufactured solid body. At least two reactive polymer materials are mixed together thoroughly and die resultant mixture is discharged via a nozzle in the form of a thin tube. This thin tube is pulverized or atomized by means of the introduction of a controlled flow of pressurized air with the result that die pulverized mixture may be sprayed onto an open mold or onto a surface or onto a previously manufactured solid body which is to be coated.
Abstract:
The pressure swirl atomizing nozzle for spraying a curable composition comprises an orifice piece (16), which defines a funnel-shaped cavity and an exit orifice (17), and an injector piece (18) which closing off the funnel-shaped cavity so that the funnel-shaped cavity forms a swirl chamber (19) between a front side of the injector piece (18) and the exit orifice (17). The injector piece (18) comprises at least two swirl ports (20) which end in the swirl chamber (19) for injecting the curable composition therein and for thereby imparting swirl to the curable composition. Compared to the sum of the smallest cross-sectional areas of the swirl ports (20), the side wall (24) of the swirl chamber (19) has a relatively small surface area which is however still large enough to distribute the curable composition so as to achieve a uniform spray pattern. By the reduced size of the swirl chamber (19), the curable composition can be atomized more efficiently. In this way, changes of the relatively low flow rate of the curable composition through the nozzle have less effect on the droplet size and on the stability of the spray pattern.
Abstract:
An improved apparatus and method for forming a three-dimensional object by planar deposition of forming materials includes containers for holding molten forming materials, mechanical piston or screw members in the containers for pressurizing the molten forming materials in each of the containers, and an adjustable planar nozzle mechanism coupled to the containers through which the pressurized molten forming materials flow to form variable width planar jets that are deposited in layers onto a substrate movable along three axes to form the three-dimensional object. The adjustable planar nozzle mechanism includes cooperating position controllable plates for forming a variable width planar nozzle opening. The edges of the planar nozzle opening are advantageously non-parallel at the ends of the nozzle opening to ensure uniform thickness of the deposited planar jets.
Abstract:
Spray equipment is used to apply fiberglass reinforced plastics onto mold surfaces. Such spray equipment includes a nozzle designed to allow flow of resin to a point of application as well as an outlet dispenser of small cut pieces of glass which aims the glass into the resin flow so that the resin and glass mix beyond the nozzle exit. A second nozzle is positioned below the resin nozzle and is angled slightly upwardly at the resin stream in the form of an air knife. The air knife causes the resin stream to uniformly spread permitting the chopped glass to fall within the resin stream and uniformly mixed therewithin for application to a mold surface.
Abstract:
A method for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers.
Abstract:
A method for the manufacture of a fiber reinforced thermosetting resin molding material, which comprises feeding a liquid thermosetting resin composition to the surface of at least one transfer roller in rotation, causing the resin composition adhering to the surface to be spread in the form of particles by a spreading roller opposed across a gap to the transfer roller and rotated in the same direction as the transfer roller, allowing the spread said resin composition to be piled up in a state mixed with reinforcing fibers separately spread, and subsequently removing the entrapped air from the resultant pile thereby enabling the resin composition to wet out the reinforcing fibers in said pile.
Abstract:
A method and apparatus is disclosed for powder coating the interior surface of a heated mold cavity. Electrostatically charged powder is sprayed upwardly onto the interior surface of a mold surrounded by a mask. The mask includes a shield located adjacent to but spaced from the shear edge of the mold. Additionally, the mask includes a vacuum duct located beneath the shield. While air is drawn into the vacuum duct air is either blown through the slot defined between the shield and the mold shear edge or air is pulled into the slot so as to prevent oversprayed powder from coming into contact with and adhering to the shear edge of the mold. There is no enclosure surrounding the mold cavity other than the mask because rising heated air currents entrap and maintain the cloud of sprayed powder interiorly of the mold cavity and the surrounding mask. Any oversprayed material escaping from the cavity is caught in the vacuum duct and carried to a powder collector.
Abstract:
Resin is sprayed onto a mandrel by traversing a nozzle axially of the mandrel, reinforcement is applied on the resin layer and continuous filament is wound on the reinforcement and resin. To control the amount of resin sprayed onto particular locations of the mandrel, auxiliary means move the nozzle relative to the mandrel in addition to the axial-traversing movement, such as by moving the nozzle toward and away from the mandrel or by turning the nozzle. Such turning can be about an upright axis to displace the depositing location of the resin spray axially of the mandrel, or about an axis generally parallel to the path along which resin is ejected from the nozzle in a flat fan-shaped spray to change the plane of the spray from a position generally parallel to the axis of the mandrel into a position at a substantial angle to the axis of the mandrel. A shield is swingable either up and down or sidewise between a position offset from the path along which resin is ejected from the nozzle toward the mandrel to a position interposed between the nozzle and the mandrel for intercepting a spray of liquid from the nozzle toward the mandrel.