摘要:
A method and apparatus for manipulating the surface of a sample including a cantilever, a first tip mounted on the cantilever, and a second tip mounted on the cantilever, the first and the second tip being configured to combine to form an imaging probe and to separate to form a manipulation probe. The first and second tips are configured to form a first position characterized in that the tips combine to form an imaging tip and the first and the second tip are configured to form a second position characterized in that the tips separate to manipulate particles on a surface of a sample. The tips can be configured to form the first position when a voltage is applied across the tips, and preferable extend downwardly from the cantilever substantially perpendicular thereto.
摘要:
A method and apparatus for manipulating the surface of a sample including a cantilever, a first tip mounted on the cantilever, and a second tip mounted on the cantilever, the first and the second tip being configured to combine to form an imaging probe and to separate to form a manipulation probe. The first and second tips are configured to form a first position characterized in that the tips combine to form an imaging tip and the first and the second tip are configured to form a second position characterized in that the tips separate to manipulate particles on a surface of a sample. The tips can be configured to form the first position when a voltage is applied across the tips, and preferable extend downwardly from the cantilever substantially perpendicular thereto.
摘要:
An apparatus and method of operating a probe-based instrument in a torsional mode. The method includes providing a probe having a cantilever defining a longitudinal axis and supporting a tip. In operation, the method torsionally oscillates the probe generally about the longitudinal axis at a resonance. In addition, the method changes a separation distance between the tip and a surface of a sample so the tip interacts with the surface during data acquisition. By detecting a change in the torsional oscillation of the cantilever in response to the interaction between the tip and the surface, forces, including shear forces and shear force gradients, between the tip and the surface can be measured to determine sub-nanometer features.
摘要:
A method and apparatus for manipulating the surface of a sample including a cantilever, a first tip mounted on the cantilever, and a second tip mounted on the cantilever, the first and the second tip being configured to combine to form an imaging probe and to separate to form a manipulation probe. The first and second tips are configured to form a first position characterized in that the tips combine to form an imaging tip and the first and the second tip are configured to form a second position characterized in that the tips separate to manipulate particles on a surface of a sample. The tips can be configured to form the first position when a voltage is applied across the tips, and preferable extend downwardly from the cantilever substantially perpendicular thereto.
摘要:
A probe-based surface characterization or metrology instrument such as a scanning probe microscope (SPM) or a profilometer is controlled to account for errors in the vertical positioning of its probe and errors in detecting the vertical position of its probe while scanning over relatively large lateral distances. Accounting for these errors significantly improves the measurement of vertical dimensions. These errors are accounted for by subtracting reference scan data acquired from the scanned sample from measurement scan data. The measurement scan data is obtained from an area that includes the feature of interest as well as a portion of a reference area which is preferably located near to the feature of interest and which is preferably featureless. The reference scan data is obtained from an area that includes the reference area and that preferably excludes the features of interest. Subtracting the reference such data from the measurement scan data obtains corrected measurement scan data that accounts for scanning errors and for errors in detecting the probe idiosyncrasies. In order to facilitate process automation, the features of interest can be identified automatically or semi-automatically by operating the instrument in a feature-locating mode to identify distinguishing characteristics of the features of interest such as differences in magnetic or electrical properties between the features of interest and the adjacent features. This procedure is particularly wellsuited for measuring pole tip recession in a magnetic head.