Abstract:
A phase-change memory device and its firing method are provided. The firing method of the phase-change memory device includes applying a writing current to phase-change memory cells, identifying a state of the phase-change memory cells after applying the writing current, and applying a firing current, in which an additional current is added to the writing current, to the phase-change memory cells in accordance with the state.
Abstract:
Nonvolatile memory devices include a plurality of nonvolatile memory cells and a write circuit that is operable to write data to the nonvolatile memory cells over a plurality of consecutive division write periods by generating a plurality of write pulses whose peaks do not coincide with one another to the nonvolatile memory cells.
Abstract:
A semiconductor memory device in which word lines are arranged so as to improve the yield with respect to bridging defects. The semiconductor memory device of the present invention has a plurality of interconnects arranged in parallel on a cell array portion, in which the interconnects are comprised of power lines and ground lines arranged alternately on the cell array portion, main word lines arranged on each side of the power lines, and a plurality of block word lines sequentially arranged between a single main word line and a ground line adjacent thereto and controlled by the main word line. In this way, interconnects are arranged in alternating groups so that interconnects having the same logic level during the standby mode are grouped together. The result of this arrangement is that interconnect bridges within a group will not lead to increased standby current, thereby substantially improving the yield of the semiconductor memory device. In addition, the spacing between groups of interconnects may be increased, further reducing the probability of increased standby current due to a bridging defect, thereby further increasing the yield.
Abstract:
Nonvolatile memory devices include an array of variable-resistance memory cells and a write driver electrically coupled to the array. The write driver is configured to drive a bit line in the array of variable-resistance memory cells with a stair-step sequence of at least two unequal bit line voltages during an operation to program a variable-resistance memory cell in said array. This stair-step sequence of at least two unequal bit line voltages includes a precharge voltage (e.g., Vcc-Vth) at a first step and a higher boosted voltage (e.g., Vpp-Vth) at a second step that follows the first step.
Abstract:
A PRAM includes a memory cell array of phase change memory cells, and a write circuit receiving an externally provided first voltage and supplying a write pulse for writing data to the memory cells in a normal operation mode. The write circuit also receives an externally provided second voltage higher than the first voltage and supplies a firing pulse to at least one firing-failed phase change memory cell.
Abstract:
A phase-change memory device and its firing method are provided. The firing method of the phase-change memory device includes applying a writing current to phase-change memory cells, identifying a state of the phase-change memory cells after applying the writing current, and applying a firing current, in which an additional current is added to the writing current, to the phase-change memory cells in accordance with the state.
Abstract:
Nonvolatile memory devices include a plurality of nonvolatile memory cells and a write circuit that is operable to write data to the nonvolatile memory cells over a plurality of consecutive division write periods by generating a plurality of write pulses whose peaks do not coincide with one another to the nonvolatile memory cells.
Abstract:
A phase-change memory device and its firing method are provided. The firing method of the phase-change memory device includes applying a writing current to phase-change memory cells, identifying a state of the phase-change memory cells after applying the writing current, and applying a firing current, in which an additional current is added to the writing current, to the phase-change memory cells in accordance with the state.
Abstract:
A phase-change memory device and its firing method are provided. The firing method of the phase-change memory device includes applying a writing current to phase-change memory cells, identifying a state of the phase-change memory cells after applying the writing current, and applying a firing current, in which an additional current is added to the writing current, to the phase-change memory cells in accordance with the state.
Abstract:
Integrated circuit devices include a comparator circuit and a fuse programmable input circuit. The fuse programmable input circuit generates first and second differential input signals at voltage levels that can be controlled through a pair of fuses. The comparator circuit generates an output signal based on the relative voltage levels exhibited by the first and second differential input signals. In particular, the output signal is driven to a first logic state when the voltage difference between the first and second differential input signals is positive and the output signal is driven to a second logic state, which is opposite the first logic state, when the voltage difference is negative. Because the comparator is responsive to the relative difference between the voltage levels of the first and second differential input signals and not the absolute magnitudes of the voltage levels, fuse remnants that may exist after the fuse programmable input circuit has been programmed (i.e., one or more fuses have been cut) typically do not affect the output signal.