摘要:
In the present invention, carbon monoxide in the hydrogen-containing gas is contacted with oxygen in the presence of a catalyst comprising platinum and at least one metal selected from the group consisting of cobalt, nickel, copper and manganese.
摘要:
A hydrogen generating apparatus composed of an autothermal-reforming catalyst layer, a conduit pipe for feeding a mixture of methanol and steam, a conduit pipe for feeding oxygen equipped with a flow regulator, and a hydrogen-permeable membrane disposed downstream of the autothermal-reforming catalyst layer. The hydrogen generating apparatus is equipped with a temperature-measuring device for measuring the temperature of the hydrogen-containing gas discharged from the autothermal-reforming catalyst layer. The amount of oxygen to be fed to the autothermal-reforming catalyst layer is increased or decreased by the flow regulator according to the measured temperature of the hydrogen containing gas. Thus, the heat generation by the autothermal reforming is controlled and the temperature of the hydrogen containing gas is regulated within a limited range so as to maintain the hydrogen separation step at an optimum temperature. With the hydrogen generating apparatus, the heat generated by the autothermal reforming reaction is effectively utilized in the hydrogen separation step without needing an additional means.
摘要:
There is disclosed a process for producing a hydrogen-containing gas, which comprises reacting methanol, steam and oxygen in the presence of (1) a catalyst comprising platinum and zinc oxide, wherein the content of the platinum is in the range of 5 to 50% by weight based on the total amount of the platinum and zinc oxide, or (2) a catalyst comprising platinum, zinc oxide and chromium oxide, wherein the atomic ratio of zinc to chromium (zinc/chromium) is in the range of 2 to 30, or (3) a catalyst comprising platinum, zinc oxide and at least one element selected from the group consisting of lead, bismuth and indium. Each of the catalysts has a high activity and is excellent in heat resistance and selectivity to steam-reforming reaction, and accordingly is capable of efficiently producing a reformed gas which is composed principally of hydrogen and is well suited for use in a fuel cell and the like by means of auto thermal reaction reaction, while lowering the concentration of carbon monoxide in a reformed hydrogen-containing gas.