摘要:
The invention relates to low-temperature curable photosensitive compositions containing a polyamic acid, which compositions are developable in aqueous alkaline solutions and are curable, at a temperature of at least 160° C. and up to 200° C., to low modulus polyimides suitable for use in electronic circuitry applications, and which are particularly suitable for use in flexible circuit applications where low curl, low temperature curing, and good adhesion is a significant advantage.
摘要:
The polyimides of the present invention are derived from aliphatic diamines and show advantageous arc tracking performance (i.e., low arc tracking). These polyimides can be cured at low temperatures making them suitable as coverlay compositions in electronic circuitry. In addition, these polyimides are soluble and excellent in heat resistance and adhesion properties, showing a low dielectric constant even at 10 GHz or more.
摘要:
The present invention relates to a multi-layer laminate having a low glass transition temperature polyimide layer, a high glass transition temperature polyimide layer, and a conductive layer.The low glass transition temperature polyimide layer is synthesized by contacting an aromatic dianhydride with a diamine component, the diamine component comprising about 50 to about 90 mole % aliphatic diamine (the remainder being aromatic diamine) having the structural formula H2N—R—NH2 wherein R is hydrocarbon from C4 to C16. The low glass transition polyimide is an adhesive and has a glass transition temperature in the range of from 150° C. to 200° C.The high glass transition temperature polyimide layer has a glass transition temperature above the low glass transition temperature polyimide layer and is a thermoset polyimide.A multi-layer-layer substrate of the present invention has the high glass transition temperature polyimide layer positioned between the conductive layer and the low glass transition polyimide, or optionally contains an additional low glass transition temperature polyimide positioned between the conductive layer and the high glass transition polyimide layer.
摘要:
The present invention relates to a multi-layer laminate having a low glass transition temperature polyimide layer, a high glass transition temperature polyimide layer, and a conductive layer. The low glass transition temperature polyimide layer is synthesized by contacting an aromatic dianhydride with a diamine component, the diamine component comprising about 50 to about 90 mole % aliphatic diamine (the remainder being aromatic diamine) having the structural formula H2N—R—NH2 wherein R is hydrocarbon from C4 to C16. The low glass transition polyimide is an adhesive and has a glass transition temperature in the range of from 150° C. to 200° C. The high glass transition temperature polyimide layer has a glass transition temperature above the low glass transition temperature polyimide layer and is a thermoset polyimide. A multi-layer-layer substrate of the present invention has the high glass transition temperature polyimide layer positioned between the conductive layer and the low glass transition polyimide, or optionally contains an additional low glass transition temperature polyimide positioned between the conductive layer and the high glass transition polyimide layer.
摘要:
The invention relates to low-temperature curable photosensitive compositions containing a polyamic acid, which compositions are developable in aqueous alkaline solutions and are curable, at a temperature of at least 160° C. and up to 200° C., to low modulus polyimides suitable for use in electronic circuitry applications, and which are particularly suitable for use in flexible circuit applications where low curl, low temperature curing, and good adhesion is a significant advantage.
摘要:
Flame-retardant, thin gauge polyimide films are disclosed which are generally useful in lightweight, aircraft thermal insulation, or similar type applications. These films contain additives having a nitrogen-containing condensed phosphoric acid compound where the additive component is present in a thin polyimide dry film at a weight ratio of about 3 to 15 weight percent. The thickness of these flame-retarding, thin polyimide films is between 8 and 45 microns. These films have a flame retardancy rating that meets or exceeds national standards according either UL 94 Thin Material Vertical Burning Test 94VTM-0, UL 94 Thin Material Vertical Burning Test 94VTM-1 or UL 94 Thin Material Vertical Burning Test 94VTM-2.