Abstract:
A vibration gyroscope circuitry (VCIRC) connectable to a vibrating MEMS gyroscope (VMEMS). The circuitry comprises drive circuitry (DRIVE) arranged to drive, when the circuitry is connected, the vibration MEMS gyroscope (VMEMS) and a measurement unit (DMU) which provides a drive measurement voltage signal (DMV) forming a measure of a displacement of a mass along a drive axis. A sense circuitry (SENSE) is arranged to process a sense measurement signal of the vibration MEMS gyroscope (VMEMS) forming a measure for a displacement of the mass along a sense axis. A digital sample clock generator (SCG) is arranged to generate a sample clock signal (SCLK) from an input signal (FDxy) derivable from a drive measurement voltage signal (DMV). The sample clock generator (SCG) comprises an oscillator (HFOSC) arranged to generate a master clock (MOSC), and a counter unit (OSCCNTR) arranged to count master clock periods during one period of the input signal. The clock generator also comprises a number count monitor (NCM) arranged to determine during how many input signal periods the number count stays constant, and to compare the number of constant periods (Ncp) with a critical number of constant periods (Ncp_crit). A frequency shifter (FSH) will trigger the oscillator to shift the master clock frequency whenever the number count monitor (NCM) has determined that the number of constant periods (Ncp) exceeds the critical number of constant periods (Ncp_crit).
Abstract:
A system comprises a mechanical resonator; an analog circuit operably coupled to the mechanical resonator; the analog circuit arranged to receive a mechanical resonator measurement signal and to output a mechanical resonator actuation signal to the mechanical resonator; and a digital actuator operably coupled to the analog circuit and configured to provide a frequency sweep of signals to the analog circuit that induces movement of the mechanical resonator.
Abstract:
A drive-mode oscillator module for use within a micro-electro-mechanical system (MEMS) device is described. The drive-mode oscillator module is arranged to receive a proof-mass measurement signal from a proof-mass of the MEMS device and to output a proof-mass actuation signal to the proof-mass of the MEMS device. The drive-mode oscillator module comprises a first, higher gain accuracy drive-mode component for generating an actuation signal to be output by the drive-mode oscillator module during an active mode of the MEMS device, and a second, lower power consumption drive-mode component for generating an actuation signal to be output by the drive-mode oscillator module during a standby mode of the MEMS device.
Abstract:
A drive-mode oscillator module generates at least one proof-mass drive signal for use within a micro-electro-mechanical system (MEMS) device. The drive-mode oscillator module comprises at least one gain control component arranged to receive at least one proof-mass motion measurement signal, and to generate a digital modulation control signal based at least partly on the at least one proof-mass motion measurement signal, and at least one modulation component arranged to receive the digital amplitude modulation control signal, and to output at least one proof-mass drive signal. The at least one modulation component is arranged to digitally modulate the at least one proof-mass drive signal based at least partly on the received digital amplitude modulation control signal.
Abstract:
A vertical power component on a silicon wafer, including a lightly-doped epitaxial layer of a second conductivity type on the upper surface of a heavily-doped substrate of a first conductivity type, the epitaxial layer having a thickness adapted to withstanding the maximum voltage likely to be applied to the power component during its operation; and an isolating wall formed by etching a trench through the epitaxial layer and diffusing from this trench a dopant of the first conductivity type of high doping level.
Abstract:
A drive-mode oscillator module for use within a micro-electro-mechanical system (MEMS) device is described. The drive-mode oscillator module is arranged to receive a proof-mass measurement signal from a proof-mass of the MEMS device and to output a proof-mass actuation signal to the proof-mass of the MEMS device. The drive-mode oscillator module comprises a first, higher gain accuracy drive-mode component for generating an actuation signal to be output by the drive-mode oscillator module during an active mode of the MEMS device, and a second, lower power consumption drive-mode component for generating an actuation signal to be output by the drive-mode oscillator module during a standby mode of the MEMS device.
Abstract:
A method for manufacturing a vertical power component on a silicon wafer, including the steps of growing a lightly-doped epitaxial layer of a second conductivity type on the upper surface of a heavily-doped substrate of a first conductivity type, the epitaxial layer having a thickness adapted to withstanding the maximum voltage likely to be applied to the power component during its operation; and delimiting in the wafer an area corresponding to at least one power component by an isolating wall formed by etching a trench through the epitaxial layer and diffusing from this trench a dopant of the first conductivity type of high doping level.
Abstract:
Vibration gyroscope circuitry, connectable to a vibrating MEMS gyroscope, includes drive circuitry for driving the gyroscope and a measurement circuit for providing a drive measurement signal indicating displacement of a mass along a drive axis. Sense circuitry processes a sense measurement signal of the gyroscope indicating displacement of the mass along a sense axis. A digital sample clock generator includes an oscillator for generating a master clock, a counter for counting master clock periods during one period of an input signal derived from the drive measurement signal, and a number count monitor for determining during how many input signal periods the number count stays constant and for comparing a number of constant periods with a critical number of constant periods. A frequency shifter triggers the oscillator to shift the master clock frequency whenever the monitor determines that the number of constant periods exceeds the critical number of constant periods.
Abstract:
A system comprises a mechanical resonator; an analog circuit operably coupled to the mechanical resonator; the analog circuit arranged to receive a mechanical resonator measurement signal and to output a mechanical resonator actuation signal to the mechanical resonator; and a digital actuator operably coupled to the analog circuit and configured to provide a frequency sweep of signals to the analog circuit that induces movement of the mechanical resonator.
Abstract:
A drive-mode oscillator module generates at least one proof-mass drive signal for use within a micro-electro-mechanical system (MEMS) device. The drive-mode oscillator module comprises at least one gain control component arranged to receive at least one proof-mass motion measurement signal, and to generate a digital modulation control signal based at least partly on the at least one proof-mass motion measurement signal, and at least one modulation component arranged to receive the digital amplitude modulation control signal, and to output at least one proof-mass drive signal. The at least one modulation component is arranged to digitally modulate the at least one proof-mass drive signal based at least partly on the received digital amplitude modulation control signal.