Abstract:
A stitched image sensor array on a semiconductor substrate with identical blocks that have wherein said first configuration includes enable inputs, which vary a function of the block depending on the connection to the enable inputs. The enable inputs can set an SRAM to receive different numbers of inputs.
Abstract:
An image sensor system using a circuit that automatically provides a multiple point output which represents, in a first mode, each of the multiple points receiving outputs at substantially the same time delayed only by a transit time across a wire connecting the multiple point outputs, and in a second mode, each of the multiple points producing outputs that are delayed by a delay time, where each output is delayed relative to each other output by said delay time in the second mode.
Abstract:
An image sensor system using a circuit that automatically provides a multiple point output which represents, in a first mode, each of the multiple points receiving outputs at substantially the same time delayed only by a transit time across a wire connecting the multiple point outputs, and in a second mode, each of the multiple points producing outputs that are delayed by a delay time, where each output is delayed relative to each other output by said delay time in the second mode.
Abstract:
A stitched image sensor array on a semiconductor substrate with identical blocks that have wherein said first configuration includes enable inputs, which vary a function of the block depending on the connection to the enable inputs. The enable inputs can set an SRAM to receive different numbers of inputs.
Abstract:
An image sensor pixel the conformist single pixel of a larger array. The image sensor pixel can be a large one, such as larger than 100 μm. The image sensor pixel has readout notes on multiple sides thereof, e.g. on to work for sides, that are symmetrically located on the pixel. The readout notes are simultaneously read out to read out a part of the image from the pixel.
Abstract:
Calibrating of A/D converters is carried out by obtaining adjustable reference voltages which are used in A/D conversion, comparing a first divided reference voltage of a full range voltage Vref, with a second divided reference voltage of Vref using analog to digital converters that are used in the A/D conversion; and adjusting at least one of said reference voltages to obtain a set ratio between said multiple ones of said reference voltages. The compared values can include a divided version of Vref, e.g., 3/8 Vref.
Abstract:
An image sensor pixel the conformist single pixel of a larger array. The image sensor pixel can be a large one, such as larger than 100 μm. The image sensor pixel has readout notes on multiple sides thereof, e.g. on to work for sides, that are symmetrically located on the pixel. The readout notes are simultaneously read out to read out a part of the image from the pixel.
Abstract:
A video system is disclosed which is capable of receiving digital data from a source such as a video camera, and subsequently transferring the received data into a main frame buffer for display on a video display, where the data from the source can overlay a primary image stored in the main frame buffer. An auxiliary frame buffer, consisting of a bank of dual-port RAMs, receives the data of the overlay image via its serial port and transfers this data into the randomly accessible array therein. A direct-memory-access (DMA) operation performs the transfer from the auxiliary frame buffer into the main frame buffer, with the source and destination positions in the auxiliary and main frame buffers, respectively, independently selectable. The performance of the DMA operation can be enhanced by simultaneously performing a page mode read of the auxiliary frame buffer with a page mode write to the main frame buffer.
Abstract:
An image sensor system has a first stitched image sensor part that has multiple image sensing pixels and pixel gates. The multiple pixel gates are connected together by a first line on the first stitched image sensor part, and said multiple pixel gates are controlled by a first control signal. A second stitched image sensor part also has multiple sensing pixels and pixel gates, and the multiple pixel gates are connected together by a second line on said second stitched image sensor part, and said multiple pixel gates on said second stitched image sensor part are controlled by the first control signal. A driver for the first control signal, wherein said driver includes a first part for controlling said multiple pixel gates of said first stitched image sensor part and said driver has a second part, also driven by the same first control signal, for controlling said multiple pixel gates of said second stitched image sensor part.
Abstract:
Calibrating of A/D converters is carried out by obtaining adjustable reference voltages which are used in in A/D conversion, comparing a first divided reference voltage of a full range voltage Vref, with a second divided reference voltage of Vref using analog to digital converters that are used in the A/D conversion; and adjusting at least one of said reference voltages to obtain a set ratio between said multiple ones of said reference voltages. The compared values can include a divided version of Vref, e.g., 3/8 Vref.