摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a GaSb nucleation layer on a substrate, forming a Ga(Al)AsSb buffer layer on the GaSb nucleation layer, forming an In0.52Al0.48As bottom barrier layer on the Ga(Al)AsSb buffer layer, and forming a graded InxAl1-xAs layer on the In0.52Al0.48As bottom barrier layer thus enabling the fabrication of low defect, device grade InGaAs based quantum well structures.
摘要:
A puncture protector having a flexible backing with adhesive on one side thereof and a shielding arrangement for blocking passage of needles, both of which can be conformed to that portion of the body of the needle user, often the fingers, which is desired to be protected.
摘要:
A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm−2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
摘要翻译:描述了在硅衬底上形成III-V器件层的层叠故障和双阻挡屏障及其制造方法。 本发明的实施方案能够在硅衬底上形成缺陷密度低于1×10 8 cm -2的III-V InSb器件层。 在本发明的实施例中,缓冲层位于III-V器件层和硅衬底之间以滑动位错。 在本发明的一个实施例中,基于晶格常数,带隙和熔点选择GaSb缓冲层,以防止许多晶格缺陷从缓冲器传播到III-V器件层中。 在具体实施例中,III-V InSb器件层直接形成在GaSb缓冲器上。
摘要:
Various embodiments proved a buffer layer that is grown over a silicon substrate that provides desirable isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.
摘要:
A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm−2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
摘要翻译:描述了在硅衬底上形成III-V器件层的层叠故障和双阻挡屏障及其制造方法。 本发明的实施方案能够在硅衬底上形成缺陷密度低于1×10 8 cm -2的III-V InSb器件层。 在本发明的实施例中,缓冲层位于III-V器件层和硅衬底之间以滑动位错。 在本发明的一个实施例中,基于晶格常数,带隙和熔点选择GaSb缓冲层,以防止许多晶格缺陷从缓冲器传播到III-V器件层中。 在具体实施例中,III-V InSb器件层直接形成在GaSb缓冲器上。
摘要:
An apparatus including a contact point formed on a device layer of a circuit substrate or interconnect layer on a substrate; a first dielectric layer including cubic boron nitride on the substrate; and a different second dielectric layer on the substrate and separated from the device layer by the first dielectric layer. Also, an apparatus including a circuit substrate including a device layer and a composite dielectric layer. The composite dielectric includes a first dielectric material including cubic boron nitride and a different second dielectric material. The first dielectric material surrounds the second dielectric material.
摘要:
A gaseous deposition source for providing a deposition material that emanates from a crucible having mulitple thin film heating elements formed thereon, with each adjacent pair being separated by an insulating layer therebetween. A gaseous deposition source can have a crucible with a cover thereon with one or more apertures therein and with thin film heating elements on that cover about such apertures. A substrate heater may be used formed of thin film heating elements provided on a base.
摘要:
A needle shielding device attachable to a hypodermic syringe for protecting a user from contacting the tip of a needle. The device comprises a generally cylindrical needle shield slidably engaging a syringe body for protecting a user from being stuck by the needle tip of the syringe. The needle shield continuously frictionally engages and grips the syringe body as the shield is moved between a retracted position wherein the needle extends forwardly of the needle shield and a extended position wherein the needle tip is protectively enclosed by the needle shield.
摘要:
A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108cm−2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
摘要:
Various embodiments provide a buffer layer that is grown over a silicon substrate that provides desirable device isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.