摘要:
A biosensor having enhanced sensitivity to physical or chemical parameters comprises a waveguide and a coating disposed on the waveguide. The coating has a refractive index that enhances the sensitivity of the biosensor to physical or chemical parameters. In a preferred embodiment, the coating comprises at least one dendrimer disposed on the waveguide, wherein the coating has a refractive index ranging from about 1.0 to about 1.5. A method for fabrication of the biosensor is also provided.
摘要:
A coated substrate is claimed. The coating, disposed on the substrate, comprises a self-assembled film having at least one bilayer. Each bilayer comprises a polyanion electrolyte layer and a polycation electrolyte layer. The uppermost layer or exposed layer of the coating comprises a fluoroalkyl group. Each bilayer thickness ranges from about 0.1 nanometers to about 20 nanometers. The resulting coated substrate has a low surface energy and is hydrophobic and/or oleophobic.
摘要:
A fiber-optic method for making simultaneous multiple parameter measurements employs an optical fiber sensor having at least one long period grating disposed therein. An excitation is created in the optical fiber sensor wherein a plurality of evanescent field sensing depths result. At least two long period grating signatures are created. When the optical fiber sensor is exposed to at least one material, changes in the material are identified by simultaneously measuring and comparing shifts in each long period grating signature; correlating the shifts to changes in the material; and solving a series of equations that compare changes in the coupling wavelength for a specific loss band. A reactive coating may be applied to the optical fiber sensor proximate to the long period grating such that changes in the reactive coating as it reacts with the material may also be monitored.
摘要:
A photoresistor comprises a silicon-on-insulator substrate (101) comprising a device layer (4). In an example embodiment and mode at least two non-contiguous first highly conductive regions (2, 3) of semiconductor material are formed on a surface of the device layer, and at least one active region (1) of a high resistivity semiconductor material of a same conductivity type as the first highly conductive regions are formed to propagate through a whole thickness of the device layer and to electrically contact the at least two non-contiguous first highly conductive regions.