Abstract:
A rupture resistant system is provided and comprises a tank comprising a top member, a combined body member, the combined body member forming a side and bottom of the tank, the combined body member comprising at least one curved non-linear surface to define a partially curved interior in at least a portion of the tank; and a component situated within the tank and susceptible to creating increasing pressure within the tank when under a fault condition. At least one of the top, sidewall, and bottom members is connected to another of the top, sidewall, and bottom members in a manner so as to cause an increase in inner volume of the tank under increased pressure conditions.
Abstract:
A compression device has improved cooling capability. The device includes a wicking layer adapted to move moisture. A portion of the wicking layer is exposed from under bladder material defining a bladder. In use, the wicking layer wicks moisture from the patient's limb and the wicked moisture is able to evaporate through the device at the portion of the wicking layer that is exposed.
Abstract:
A composition contains an additive for assisting with regeneration of the PF in the form of an organic dispersion of iron particles in crystallized form and a detergent including a quaternary ammonium salt.
Abstract:
A method for augmenting blood flow in a limb that is wrapped with a sleeve having at least one chamber for applying compression to the limb in a region generally underlying the chamber includes pressurizing the chamber to a first compression pressure and then reducing the pressure to a refill pressure. Pressure in the chamber is then sensed to determine a first venous refill time. The preceding steps are repeated a second and other times using second and other compression pressures that are different from the first compression pressure and from each other to determine second and other venous refill times. A customized compression pressure is determined by locating the compression pressure at which blood flow out of the region generally underlying the chamber is maximized by finding compression pressure at a maximum venous refill time. A compression device employing such a method is also disclosed.
Abstract:
A compression device for being wrapped around a body portion of a wearer includes an inner layer and an outer cover. First and second bladder layers are secured together to define an inflatable bladder having an outer perimeter. The inner layer, outer cover and first and second bladder layers are joined together at a plurality of discrete spot welds within the outer perimeter of the inflatable bladder.
Abstract:
Needles are deployed in tissue under direct ultrasonic or other imaging. To aid in deploying the needle, a visual needle guide is projected on to the image prior to needle deployment. Once the needle guide is properly aligned, the needle can be deployed. After needle deployment, a safety boundary and treatment region are projected on to the screen. After confirming that the safety boundary and treatment regions are sufficient, the patient can be treated using the needle.
Abstract:
A compression sleeve for being wrapped around a leg of a wearer includes adjacent flexible sleeve sections. At least one of the sleeve sections has an air bladder therein adapted to inflate for compressing a portion of the leg. A structural component is secured to the sleeve and extends generally between the flexible sleeve sections to maintain a spacing of the adjacent sleeve sections lengthwise of the leg when the sleeve is wrapped around the leg. Bladder layers are joined together to form the air bladder. The bladder is joined together at least at two weld points on opposite sides of the structural component to locate the structural component on the sleeve so as to maintain the spacing of the adjacent sleeve sections.
Abstract:
A method for augmenting blood flow in a limb that is wrapped with a sleeve having at least one chamber for applying compression to the limb in a region generally underlying the chamber includes pressurizing the chamber to a first compression pressure and then reducing the pressure to a refill pressure. Pressure in the chamber is then sensed to determine a first venous refill time. The preceding steps are repeated a second and other times using second and other compression pressures that are different from the first compression pressure and from each other to determine second and other venous refill times. A customized compression pressure is determined by locating the compression pressure at which blood flow out of the region generally underlying the chamber is maximized by finding compression pressure at a maximum venous refill time. A compression device employing such a method is also disclosed.
Abstract:
Disclosed are methods and apparatus for improving images. At an image management system for storing a plurality of images from a plurality of users via a computer network, a new image is received and stored. So as to generate a new improved image, each patch of the new image is changed into an improved image patch based on selecting one or more selected mappings for converting one or more low-quality patches into one or more high-quality patches. The one or more selected mappings are determined from the images stored by the image management system. The new improved image is provided to the user.