Abstract:
A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
Abstract:
A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
Abstract:
There are provided: a bio-based coating composition which is a bio-based ingredient coating composition in consideration of environment and does not need any expensive ingredient and is also excellent in hydrolysis resistance; and an article coated with the coating composition. The bio-based coating composition is characterized by comprising the following film-forming ingredients: a lactic acid polymer (A) which contains a polyfunctional compound having a hydroxyl group and/or a carboxyl group in a functionality of not less than 3 and lactic acid as essential monomer ingredients and has a specific SP value; and a resin (B) which contains a hydroxyl group and/or a carboxyl group and has a specific SP value; wherein the difference (ΔSP) between the SP values of the lactic acid polymer (A) and the resin (B) is in the range of 0.2 to 4.0. The coated article is characterized by being obtained by being coated with the aforementioned coating composition.
Abstract:
A process for producing particles from a thin film is provided. The process includes grinding the thin film using granules that afford for the particles to maintain a structure and/or one or more properties of the thin film. In addition, the process provides for a high recovery percentage of the source material.
Abstract:
A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
Abstract:
In one embodiment, the optical lock system may include an electronic control unit, a lock housing including a lock chamber, and an optical key including a multilayer photonic structure. The multilayer photonic structure may produce a unique intensity profile and includes a plurality of coating layers of high index dielectric material and a plurality of coating layers of low index dielectric. A light source may transmit a reference light to the multilayer photonic structure when the optical key is disposed within the lock chamber. A photo detector may receive an interaction light from the multilayer photonic structure and may transmit the unique intensity profile to the electronic control unit which may execute machine readable instructions to: compare the unique intensity profile to an electronic master; and cause the lock actuator to transition from a first state to a second state when the unique intensity profile corresponds to the electronic master.
Abstract:
A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
Abstract:
Protein-polymer composite materials are provided according to embodiments of the present invention that include an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material that is useful for facilitating removal of bioorganic stains.
Abstract:
A bioactive composition includes a hydrogel matrix. At least one protein is immobilized in the hydrogel matrix. The digestive protein has a half-life at least 1000 times longer than the half-life of a free digestive protein counterpart.
Abstract:
An organic EL element has an anode, a cathode, and one or more organic compound layers sandwiched between the anode and cathode, wherein at least one layer of said organic compound layers includes an organic compound denoted by chemical formula (1), which is more specifically denoted by chemical formulas (2)-(5). By introducing desired substituents at R1-R4, these compounds can be made to demonstrate hole transport function, emissive function, electron transport function, or a combination of those functions. Due to its tendency to be structurally non-planar, the organic compound does not crystallize easily, and has a high glass transition temperature. Use of such a compound in an organic EL element enhances element life.