Abstract:
The attenuation and other optical properties of a medium are exploited to measure a thickness of the medium between a sensor and a target surface. Disclosed herein are various mediums, arrangements of hardware, and processing techniques that can be used to capture these thickness measurements and obtain dynamic three-dimensional images of the target surface in a variety of imaging contexts. This includes general techniques for imaging interior/concave surfaces as well as exterior/convex surfaces, as well as specific adaptations of these techniques to imaging ear canals, human dentition, and so forth.
Abstract:
Various configurations of cameras and cameral elements such as CCDs or the like are disclosed for use in three-dimensional imaging of interior spaces based upon distance measurements.
Abstract:
Various improvements to three dimensional imaging systems having inflatable membranes are disclosed. These improvements include, among other things, a proximity sensor that can be used to warn a user of the device when approaching a feature in a cavity, such as an eardrum in an ear canal; or optical sensors with an optical coating matching the refractive index of the medium in which the optical sensors are deployed, to improve data acquisition.
Abstract:
Various improvements to inflatable membranes are disclosed. These improvements include, among other things, features on the membrane that can mitigate hazards such as bubble formation or frictional damage during inflation of the membrane.
Abstract:
The attenuation and other optical properties of a medium are exploited to measure a thickness of the medium between a sensor and a target surface. Disclosed herein are various mediums, arrangements of hardware, and processing techniques that can be used to capture these thickness measurements and obtain dynamic three-dimensional images of the target surface in a variety of imaging contexts. This includes general techniques for imaging interior/concave surfaces as well as exterior/convex surfaces, as well as specific adaptations of these techniques to imaging ear canals, human dentition, and so forth.
Abstract:
Various improvements to inflatable membranes are disclosed. These improvements include techniques for advantageously controlling the inflation of a membrane within a cavity, such as a human ear canal.
Abstract:
Various improvements to inflatable membranes are disclosed. These improvements include techniques for advantageously controlling the inflation of a membrane within a cavity, such as a human ear canal.
Abstract:
Various improvements to inflatable membranes for use in three-dimensional imaging of interior spaces are disclosed. These improvements include, among other things, equipping the inflatable membrane with desirable optical features, such as fiducials, optical coatings, etc., that can be used to improve data acquisition.
Abstract:
Various improvements to three dimensional imaging systems having inflatable membranes are disclosed. These improvements include, among other things, a proximity sensor that can be used to warn a user of the device when approaching a feature in a cavity, such as an eardrum in an ear canal; or optical sensors with an optical coating matching the refractive index of the medium in which the optical sensors are deployed, to improve data acquisition.