摘要:
An integrated circuit includes a plurality of magnetic tunneling junction stacks, each magnetic tunneling junction stack including a reference layer, a barrier layer and a free layer, wherein the plurality of magnetic tunneling junction stacks share a continuous common reference layer.
摘要:
A magnetoresistive memory element includes a stacked structure with a ferromagnetic reference region including a fixed magnetization; a ferromagnetic free region including a free magnetization that is free to be switched between oppositely aligned directions with respect to an easy axis thereof; and a tunneling barrier made of a non-magnetic material. The ferromagnetic reference and free regions and the tunneling barrier together form a magnetoresistive tunneling junction. The ferromagnetic free region includes a plurality of N ferromagnetic free layers being magnetically coupled such that magnetizations of adjacent ferromagnetic free layers are in antiparallel alignment, where N is an integer greater than or equal to two. The ferromagnetic free region further includes at least one ferromagnetic decoupling layer including frustrated magnetization in orthogonal alignment to ferromagnetic free layer magnetizations and being arranged in between adjacent ferromagnetic free layers.
摘要:
An embodiment of the invention provides an integrated circuit having a cell. The cell includes a first magnetic layer structure having a first magnetization along a first axis, a non-magnetic spacer layer structure disposed above the first magnetic layer structure, and a second magnetic layer structure disposed above the non-magnetic spacer layer structure. The second magnetic layer structure has a second magnetization along a second axis that is arranged in an angle with regard to the first axis such that by changing the direction of the second magnetization, the direction of the first magnetization along the first axis can be determined.
摘要:
An embodiment of the invention provides an integrated circuit having a cell. The cell includes a first magnetic layer structure having a first magnetization along a first axis, a non-magnetic spacer layer structure disposed above the first magnetic layer structure, and a second magnetic layer structure disposed above the non-magnetic spacer layer structure. The second magnetic layer structure has a second magnetization along a second axis that is arranged in an angle with regard to the first axis such that by changing the direction of the second magnetization, the direction of the first magnetization along the first axis can be determined.
摘要:
The invention relates to a force sensor having a layer sequence for determining a force acting on the layer sequence along a predefined force axis. The layer sequence includes, arranged successively in a vertical direction, a first magnetic layer with a first magnetization direction, a separating layer and a second magnetic layer with a second magnetization direction. Here, the first magnetization direction is secured with respect to the layer sequence. The second magnetic layer has a magnetostriction constant that is different from zero and a uniaxial magnetic anisotropy with an anisotropy axis. The uniaxial magnetic anisotropy is generated using shape anisotropy. The second magnetization direction encloses an angle of more than 0° and less than 90° with the force axis in the quiescent state, and the anisotropy axis encloses an angle of more than 0° and less than 90° with the force axis.
摘要:
A sensor has a substrate in which a mechanically deformable area is formed. A first magnetostrictive multilayer sensor element and a second magnetostrictive multilayer sensor element are formed in the mechanically deformable area, wherein the first magnetostrictive multilayer sensor element and the second magnetostrictive multilayer sensor element are connected to each other and implemented such that when generating a mechanical deformation of the mechanically deformable area, the electric resistance of the first magnetostrictive multilayer sensor element changes in an opposite way to the electric resistance of the second magnetostrictive multilayer sensor element, or the electric resistance of the first magnetostrictive multilayer sensor element remains unchanged.
摘要:
An MRAM memory cell has a layer system of circular-disk-shaped layers. The memory cell includes two magnetic layers separated by a nonmagnetic intermediate layer. The first magnetic layer or reference layer exhibits hard-magnetic behavior. The second magnetic layer or storage layer exhibits soft-magnetic behavior. Information is stored by the magnetization state of the storage layer. The storage layer has a weak intrinsic anisotropy that defines a magnetic preferred direction. The magnetization direction of the reference layer is parallel to the magnetization direction of a remnant magnetization in the interior of the storage layer. The remnant magnetization occurs as a result of applying an external magnetic field with a field component perpendicular to the preferred direction of the intrinsic anisotropy of the storage layer.
摘要:
A magnetoresistive memory cell includes a tunnel barrier region between first and second electrode devices. The first electrode device includes a natural antiferromagnet region. A diffusion barrier region is formed in the first electrode device and serves as a chemical and/or physical transformation region of a surface region or interface region between the tunnel barrier region and the natural antiferromagnet region.
摘要:
An integrated circuit includes a plurality of magnetic tunneling junction stacks, each magnetic tunneling junction stack including a reference layer, a barrier layer and a free layer, wherein the plurality of magnetic tunneling junction stacks share a continuous common reference layer.
摘要:
The invention relates to a force sensor having a layer sequence for determining a force acting on the layer sequence along a predefined force axis. The layer sequence includes, arranged successively in a vertical direction, a first magnetic layer with a first magnetization direction, a separating layer and a second magnetic layer with a second magnetization direction. Here, the first magnetization direction is secured with respect to the layer sequence. The second magnetic layer has a magnetostriction constant that is different from zero and a uniaxial magnetic anisotropy with an anisotropy axis. The uniaxial magnetic anisotropy is generated using shape anisotropy. The second magnetization direction encloses an angle of more than 0° and less than 90° with the force axis in the quiescent state, and the anisotropy axis encloses an angle of more than 0° and less than 90° with the force axis.