Abstract:
The present invention relates to a semiconductor laser for use in an optical module for measuring distances and/or movements, using the self-mixing effect. The semiconductor laser comprises a layer structure including an active region (3) embedded between two layer sequences (1, 2) and further comprises a photodetector arranged to measure an intensity of an optical field resonating in said laser. The photodetector is a phototransistor composed of an emitter layer (e), a collector layer (c) and a base layer (b), each of which being a bulk layer and forming part of one of said layer sequences (1, 2). With the proposed semiconductor laser an optical module based on this laser can be manufactured more easily, at lower costs and in a smaller size than known modules.
Abstract:
The invention relates to an optical sensor module (1) for a measuring device. Said module comprises at least one optical sensor (2) including a diode laser (3) having a laser cavity for generating a measuring beam, the diode laser being attached to a substrate (12), converging means (5) (such as a lens). During measuring, such converging means (5) converges the measuring beam in an action plane and converges in the laser cavity the measuring beam radiation that has been back-scattered by an object to generate a self-mixing effect and means for measuring the self-mixing effect. Later means comprise a photo diode (4) and an associated signal processing circuitry. According to an essential aspect of the invention, that the diode laser (3) is configured to emit laser radiation of a wavelength for which the substrate (12) being attached to the diode laser (3) is transparent. This configuration leads to an essentially simple (and therefore cheap) sensor module.
Abstract:
A controller (7) is disclosed for controlling the power supply to a laser (3) that is used in determining the motion of an object (8). The controller comprises a power source (2) that is arranged to supply power pulses (10, 11) to the laser (3) in response to a controller signal. The controller (7) controls the generation of pulses to those periods in which a reliable result can be obtained, by detecting the laser radiation that has interacted with pulses reflected from the object (8), in order to conserve power consumption. Further the power pulses (10, 11) comprise a heating component (9), which serves to stabilize the temperature of the laser (3) and therefore calibrate the laser (3) so that a known lasing wavelength is generated.
Abstract:
A sensor module (1) for measuring the distance to a target and/or the velocity of the target (50), the sensor module (1) comprising at least one laser source (100), at least one detector (200) being adapted to detect modulated laser light and at least one control element the control element (400) being adapted to vary the focus point of the laser light and/or the intensity of the laser light and/or the direction of the laser light. The control of the laser light emitted by the laser source (100) either by active optical devices as variable focus lenses or controllable attenuators or passive optical elements in combination with arrays of laser sources (100) and detectors (200) enable flexible and robust sensor modules.
Abstract:
A controller for controlling the power of a laser that is used in determining the motion of an object includes a power source that is arranged to supply power pulses to the laser in response to a controller signal. The controller controls the generation of pulses during periods in which a reliable result can be obtained, by detecting the laser radiation that has interacted with pulses reflected from the object, in order to conserve power consumption. Further the power pulses include a heating pulse portion, which serves to stabilize the temperature of the laser and calibrate the laser so that a known lasing wavelength is generated.
Abstract:
A laser self-mixing measuring device is provided, comprising a laser with a laser cavity and a surface arranged along the optical path of the laser beam which redirects incident laser light back into the laser cavity. The surface comprises a periodic structure which diffracts the laser light into partial beams.
Abstract:
A system includes a laser generator, and a signal distortion generator circuit inline with the laser generator modulation signal and configured to generate distortion vectors in any of four distortion vector quadrants.
Abstract:
The present invention relates to a vertical cavity surface emitting laser device comprising a VCSEL with a monolithically integrated photodiode. The photodiode (2) is formed of a layer sequence of a first n-doped region (6), a p-doped region (7), an intrinsic region (8) and a second n-doped region (9) of a semiconductor material. The photodiode (2) and the laser share a common electrode, which is realized as an Ohmic n-contact (10) at said first n-doped region (6). The proposed device allows less complex manufacturing, resulting in lower manufacturing costs.
Abstract:
Method and system for an optical package are disclosed. In one embodiment of the present invention, an optical package comprises: a lead frame; a substrate mounted inside the lead frame; one or more leads attached to the substrate; an optical device or component such as a LOA chip mounted on top of the substrate; a window cap hermetically sealing the optical device or component; one or more lens attached to either side of the window cap; two fibers attached on either side of the window cap; two holes or vias that may serve as inputs into the window cap or outputs from the window cap; an electrical out extending from the window cap; and an electrically isolated enclosure enveloping all contents inside the lead frame.
Abstract:
The present invention relates to a vertical cavity surface emitting laser device comprising a VCSEL with a monolithically integrated photodiode. The photodiode (2) is formed of a layer sequence of a first n-doped region (6), a p-doped region (7), an intrinsic region (8) and a second n-doped region (9) of a semiconductor material. The photodiode (2) and the laser share a common electrode, which is realized as an Ohmic n-contact (10) at said first n-doped region (6). The proposed device allows less complex manufacturing, resulting in lower manufacturing costs.