摘要:
The invention concerns the use of whole or part of the GRF1 protein, or of cells expressing whole or part of the GRF1 protein, in methods for detecting compounds for preventing and/or treating pathologies or disorders of the central nervous system involving neuronal death, such as apoptosis, or related to leptin metabolism. The pathologies of the central nervous system are in particular cerebral ischemia, Parkinson's disease or Alzheimer's disease.
摘要:
The present invention relates to the regulation of the activity of NET (ERP/SAP-2) protein and to compounds which modify or regulate NET protein activity. The invention further relates to methods of screening for agonists or antagonists of NET in order to identify new pro-angiogenic or anti-angiogenic compounds and to therapeutic uses of these compounds. The invention also relates to transgenic animals bearing mutations in NET gene.
摘要:
The present invention relates to a novel protein of the MEKK signal transduction pathway, and the gene encoding it. The invention further relates to diagnostic and therapeutic uses of the protein or the gene, and to methods of screening for agonists or antagonists of the protein, particularly with respect to MEKK activity. In particular, the invention provides a gene encoding MIF1, the MIF1 protein, and antibodies that specifically bind MIF1. MIF1 and the MIF1 gene can be used in screening assays, particularly to identify agonists and antagonists of MIF1 interaction with MEKK, and thus modulators of the MEKK signal pathway. MIF1 gene (or cDNA) can also be delivered to cells, e.g., for in vitro screening or testing, or in vivo or ex vivo for gene therapy.
摘要:
The present invention relates to a novel protein of the MEKK signal transduction pathway, and the gene encoding it. The invention further relates to diagnostic and therapeutic uses of the protein or the gene, and to methods of screening for agonists or antagonists of the protein, particularly with respect to MEKK activity. In particular, the invention provides a gene encoding MIF1, the MIF1 protein, and antibodies that specifically bind MIF1. MIF1 and the MIF1 gene can be used in screening assays, particularly to identify agonists and antagonists of MIF1 interaction with MEKK, and thus modulators of the MEKK signal pathway. MIF1 gene (or cDNA) can also be delivered to cells, e.g., for in vitro screening or testing, or in vivo or ex vivo for gene therapy.
摘要:
The invention concerns the use of whole or part of the GRF1 protein, or of cells expressing whole or part of the GRF1 protein, in methods for detecting compounds for preventing and/or treating pathologies or disorders of the central nervous system involving neuronal death, such as apoptosis, or related to leptin metabolism. The pathologies of the central nervous system are in particular cerebral ischemia, Parkinson's disease or Alzheimer's disease.
摘要:
The invention concerns the use of whole or part of the GRF1 protein, or of cells expressing whole or part of the GRF1 protein, in methods for detecting compounds for preventing and/or treating pathologies or disorders of the central nervous system involving neuronal death, such as apoptosis, or related to leptin metabolism. The pathologies of the central nervous system are in particular cerebral ischemia, Parkinson's disease or Alzheimer's disease.
摘要:
The present invention relates to a novel protein of the MEKK signal transduction pathway, and the gene encoding it. The invention further relates to diagnostic and therapeutic uses of the protein or the gene, and to methods of screening for agonists or antagonists of the protein, particularly with respect to MEKK activity. In particular, the invention provides a gene encoding MIF1, the MIF1 protein, and antibodies that specifically bind MIF1. MIF1 and the MIF1 gene can be used in screening assays, particularly to identify agonists and antagonists of MIF1 interaction with MEKK, and thus modulators of the MEKK signal pathway. MIF1 gene (or cDNA) can also be delivered to cells, e.g., for in vitro screening or testing, or in vivo or ex vivo for gene therapy.