摘要:
A photoelectric conversion device manufacturing method, includes: continuously forming a first p-type semiconductor layer, a first i-type semiconductor layer, and a first n-type semiconductor layer, which constitute a first-photoelectric conversion unit, and a second p-type semiconductor layer which constitutes a second-photoelectric conversion unit, in decompression chambers that are different from each other; exposing the second p-type semiconductor layer to an air atmosphere; and forming a second i-type semiconductor layer and a second n-type semiconductor layer, which constitute the second-photoelectric conversion unit, on the second p-type semiconductor layer of the second-photoelectric conversion unit which was exposed to the air atmosphere, in the same decompression chamber.
摘要:
A method for manufacturing a solar cell, includes a scribing step in which grooves electrically-separating a photoelectric converter into a plurality of compartment sections are formed after the photoelectric converter is formed on a substrate by stacking a first-electrode layer, a photoelectric conversion layer, and a second-electrode layer in this order; a first groove, a second groove, a third groove, and a fourth groove are formed in the scribing step; the method including an insulating-layer forming step in which an insulating layer is formed after the scribing step and a wiring layer forming step in which a wiring layer is formed; the wiring layer passes from the first-electrode layer that is exposed at a bottom face of the second groove, through the inside of the second groove and a surface of the insulating layer, to a surface of the second-electrode layer that is disposed so as to be lateral to the fourth groove opposite to the second groove; and the wiring layer electrically connects the plurality of compartment sections to each other.
摘要:
A photoelectric conversion device manufacturing method manufactures a photoelectric conversion device in which a first photoelectric conversion unit and a second photoelectric conversion unit are sequentially stacked on a transparent-electroconductive film formed on a substrate. The method includes: forming each of a first p-type semiconductor layer, a first i-type semiconductor layer, a first n-type semiconductor layer, and a second p-type semiconductor layer in a plurality of first plasma CVD reaction chambers; exposing the second p-type semiconductor layer to an air atmosphere; supplying a gas including p-type impurities to inside a second plasma CVD reaction chamber before forming of the second i-type semiconductor layer; forming the second i-type semiconductor layer on the second p-type semiconductor layer that was exposed to an air atmosphere, in the second plasma CVD reaction chamber; and forming the second n-type semiconductor layer on the second i-type semiconductor layer.