摘要:
A manufacturing method of a coil spring for an automobile suspension includes forming a material into a coil shape; performing a heat treatment step on the material; performing a warm shot peening step on the material, and performing a hot setting step on the material. By performing the warm shot peening step prior to the hot setting step, a stronger compressive residual stress is imparted in a direction along which a large tensile stress acts during actual use of the coil spring, thereby improving sag resistance and durability of the coil spring. A coil spring is also manufactured according to this method.
摘要:
The present application provides a high strength spring steel and a high strength spring that have superior corrosion fatigue strength. The spring steel comprises, in terms of percent by mass, 0.35-0.55% C, 1.60-3.00% Si, 0.20-1.50% Mn, 0.10-1.50% Cr and at least one element selected from 0.40-3.00% Ni, 0.05-0.50% Mo 0.05-0.50% V, the balance being at least substantially Fe and incidental elements and impurities.
摘要:
A spring with high durability has a coating film composed of an epoxy resin powder coating containing softening agent which contains an epoxy resin and a softening agent comprising a thermoplastic resin for improving impact resistance of the coating film. A method of coating a spring with high durability comprises a coating step of making an epoxy resin powder coating containing softening agent which contains an epoxy resin and a softening agent comprising a thermoplastic resin for improving impact resistance of a coating film adhere to a surface on which the coating film is formed, and a baking step of baking the epoxy resin powder coating containing softening agent adhered to the surface.
摘要:
A spring is provided having a high durability in actual use and sagging resistance of the same level as or higher than conventional ones through improvement of the corrosion fatigue resistance. The spring uses as a material a steel including C: 0.35-0.55%, Si: 1.60-3.00%, Mn: 0.20-1.50%, S: 0.010% or less, Ni: 0.40-3.00%, Cr: 0.10-1.50%, N: 0.010-0.025%, V: 0.05-0.50% and Fe balance. The steel is heat treated to have a hardness of 50.5-55.0 HCC and shot-peened at a moderate temperature to render a residual stress of −600 MPa or more at a depth of 0.2 mm below the surface. The temperature at which the spring is shot-peened is preferably 100-300° C., and the hardness of shot particles for the shot-peening is preferably 450-600 Hv.
摘要:
A high-strength spring steel and a spring are provided that have superior corrosion fatigue strength. The spring steel comprises, in mass percent, 0.35-0.55% C, 1.60-3.00% Si, 0.20-1.50% Mn, 0.10-1.50% Cr, and at least one of 0.40-3.00% Ni, 0.05-0.50% Mo and 0.05-0.50% V, the balance being substantially Fe and incidental elements and impurities.
摘要:
The present invention intends to provide a method for manufacturing a high-strength spring, which is capable of generating a higher level of compressive residual stress than that given by conventional methods. This object is achieved as follows: After the final heating process, such as the tempering (in the case of a heat-treated spring) or removing-strain annealing (in the case of a cold-formed spring), a shot peening process is performed on the spring while the surface temperature of the spring is within the range from 265 to 340° C. (preferably from 300 to 340° C.). Subsequently, the spring is rapidly cooled. Preferably, a prestressing process is performed before the shot peening process, or after the shot peening process and before the rapid cooling process. The rapid cooling process may be either a water-cooling process or an oil-cooling process. A forced-air cooling process may be used if the wire diameter of the spring is small.
摘要:
[OBJECT] An oil-tempered wire for a cold-formed coil spring having a quality equivalent of or higher than a hot-formed coil spring is provided. A cold-formed coil spring made from the oil-tempered wire is also provided. [MEANS FOR SOLVING THE PROBLEM] Material used is the steel which contains, in weight percentage, 0.35 to 0.55% C, 1.8 to 3.0% Si, 0.5 to 1.5% Mn, 0.5 to 3.0% Ni, and 0.1 to 1.5% Cr. The ferrite fraction in the microscopic structure of this material is set to 50% or less. Hot rolled wire is cold drawn with a predetermined reduction of area, and a heat treatment using high frequency induction heating is conducted. It is preferable to set the maximum heating temperature between 900° C. to 1020° C. (favorably 950° C.) and the holding time between 5 to 20 seconds. It is preferable to make the oil-tempered material to have the grain size number of 9 or more, and the tensile strength from 1830 to 1980 MPa.
摘要:
A universal joint for coupling a pair of members with a connecting rigid link rockable about two sets of pivot axes. Each of the two members has a corresponding bolt hole through which extend respective stepped bolts defining two pivotal axes about which the link can pivot and rock. The link has opposite end portions each defining a loop through which extends a corresponding stepped bolt connecting a respective end of the link to a corresponding one of the two members the link couples. Each coupling bolt has a length with a major diameter extending axially through a respective coupled member and the corresponding loop of an end portion of the link to which it is coupled. An individual elastic sleeve is disposed circumferentially of the individual major diameter lengths of the bolts and a washer is disposed on each respective major diameter length between an end of the elastic sleeve and an internally threaded nut threaded on an external thread of a minor diameter length at the end of the individual stepped bolts. The link pivots about the elastic sleeves in opposite circumferential directions when coupled members rock. Provision is made for reducing play in the universal joint and allowing the link to pivot at either end about individual axes normal to the individual pivotal axes defined by the corresponding coupling bolts and elastic sleeves thereon. Each elastic sleeve has an elastic collar around each opposite end thereof disposed between the coupled member at one end and the link and at between the link and washer on an opposite end of the sleeve to define at opposite ends of the link corresponding axes normal to the pivotal axes defined by the respective coupling bolts.
摘要:
A spring has a Rockwell hardness of HRC 53 to HRC 56 and a dislocation density ρ (cm−2) that satisfies the formula ρ≧1.4×1011×H−6.7×1012 in the Rockwell hardness range of HRC 53 to HRC 56, in which H is the Rockwell hardness. The spring also has a prior austenite grain size number of 10 or higher.
摘要:
A spring with high durability has a coating film composed of an epoxy resin powder coating containing softening agent which contains an epoxy resin and a softening agent comprising a thermoplastic resin for improving impact resistance of the coating film. A method of coating a spring with high durability comprises a coating step of making an epoxy resin powder coating containing softening agent which contains an epoxy resin and a softening agent comprising a thermoplastic resin for improving impact resistance of a coating film adhere to a surface on which the coating film is formed, and a baking step of baking the epoxy resin powder coating containing softening agent adhered to the surface.