Abstract:
There is provided a method of printing a regular array of rows of subpixels on a workpiece. The subpixels have c different colors and have a subpixel pitch s. A printing head has z nozzles arranged in a row with a spacing p, where z=n1(c) and p=(c−1)(s), the printhead being at a first position relative to the workpiece. There are c different printing inks, one for each of the c colors, and each of the printing inks is supplied to the nozzles in a regular alternating pattern. The method includes steps of printing a first set of z rows of subpixels with the printing head; moving the workpiece laterally relative to the printing head by a distance d1, where d1=z(s); printing a second set of z rows of subpixels with the printing head; repeating the printing steps n2 times for a total of n2+2 sets of z rows of subpixels. Variables include: c, an integer greater than 1; n1, an integer greater than 0, with the proviso that when c is an odd number, then n1 is an odd number; and n2, an integer greater than 0.
Abstract:
There is provided a process of forming a regular array of rows of subpixels on a workpiece. The subpixels having four different colors, and a subpixel pitch s. Of the four colors, q colors are formed by printing and r colors are formed by a non-printing method. The process includes the steps: (1) providing a printing head having z nozzles arranged in a row with a spacing between the nozzles of p, where z=4n1 and p=3s, the printhead being at a first position relative to the workpiece; (2) providing q different printing inks, one for each of the q printed colors; (3) supplying each of the printing inks to the nozzles in a regular alternating pattern; (4) printing a first set of z rows of subpixels with the printing head; (5) moving and printing in a first printing pattern by: (a) moving the workpiece laterally relative to the printing head by a distance d1, where d1=4n2s; (b) printing a set of z rows of subpixels with the printing head; (6) moving and printing in a second printing pattern by: (c) moving the workpiece laterally relative to the printing head by a distance d2, where d2=d1; (d) printing a set of z rows of subpixels with the printing head; (7) moving and printing in a third printing pattern by: (e) moving the workpiece laterally relative to the printing head by a distance d3, where d3=4n3s, such that d1+d2+d3=pz; and (f) printing a set of z rows of subpixels with the printing head; (8) repeating steps (5) through (7) multiple times in the same order; and (9) applying r colors by a non-printing method;where: n1 is an integer greater than 0; n2 is an integer greater than 0, such that the integer is not a multiple of three and n2≦n1; n3 is an integer such that 2n2+n3=3n1; q is an integer from 1-4; and r is an integer, such that q+r=4.
Abstract:
In the fabrication of a display, such as an OLED display, the OLED layer stack is deposited on an electrode on the substrate. The electrode may be the anode and may comprise indium tin oxide (ITO). Desirably, the deposited films are of uniform thickness over the entire active area of the electrode. If the films are not uniform, then areas that are thicker will not emit light, and areas that are too thin may emit light in a less than optimum efficient way (power loss) and/or result in leakage current leaks through the device in a way that does not generate photons. An active-matrix organic light emitting diode comprises a substrate with a larger well size or wider channel width compared to the emission area. This improves the effective aperture ratio, which improves pixel intensity homogeneity.
Abstract:
There is provided a backplane for an organic electronic device. The backplane has a TFT substrate having a multiplicity of electrode structures thereon. There are spaces around the electrode structures and a layer of inorganic filler in the spaces. The thickness of the layer of inorganic filler is the same as the thickness of the electrode structures.
Abstract:
An apparatus and method for liquid-phase dispensing of layers onto a substrate of an electronic device. An absorbent material reduces or eliminates splatter of printing material on the substrate during continuous printing operations. The absorbent material can be regenerated by exposure of new surface area or vacuum drawing of printing material through the absorbent material.
Abstract:
There is provided a backplane for an organic electronic device. The backplane has a TFT substrate having a multiplicity of electrode structures thereon; a bank structure defining pixel areas over the electrode structures; and a thin layer of insulative inorganic material between the electrode structures and the bank structures. The bank structure is removed from and not in contact with the electrode structures by a distance of at least 0.1 microns.
Abstract:
Provided are containment structures having a substrate structure having a plurality of walls extending from a surface to define a space, wherein at least one of the walls has an overall negative slope; a first layer deposited in the space having a first surface energy no greater and a second layer deposited on top of the first layer.
Abstract:
The present concerns a method of fabricating a layer for an organic light emitting device comprising solution processing a layer from a solution comprising a small molecule emissive material, an aprotic solvent, and a polymeric material.
Abstract:
An electronic device made by a process that includes forming a first layer over a substrate and placing a first liquid composition over a first portion of the first layer. The first liquid composition includes at least a first guest material and a first liquid medium. The first liquid composition comes in contact with the first layer and a substantial amount of the first guest material intermixes with the first layer. An electronic device includes a substrate and a continuous first layer overlying the substrate. The continuous layer includes a first portion in which an electronic component lies and a second portion where no electronic component lies. The first portion is at least 30 nm thick and includes a first guest material, and the second portion is no more than 40 nm thick.
Abstract:
Organic electronic devices may include an organic electronic component having a first organic layer including guest material(s). One or more liquid compositions may be placed over a substantially solid first organic layer. Each liquid composition can include guest material(s) and liquid medium (media). The liquid medium (media) may interact with the first organic layer to form a solution, dispersion, emulsion, or suspension. Most, if not all, of the guest material(s) can migrate into the organic layer to locally change the electronic or electro-radiative characteristics of a region within the organic layer. A second organic layer may be vapor deposited over at least part of the first organic layer. The second organic layer includes at least one organic material capable of emitting blue light.