Abstract:
An integrated circuit may include programmable logic regions coupled in parallel to an interconnect bus. Multiplexing circuitry may be interposed between the programmable logic regions and the interconnect bus. The multiplexing circuitry may be formed from multiplexing circuits formed in a cascade structure. The multiplexing circuitry may dynamically receive control signals that determines which programmable logic region is allowed to drive output signals onto the interconnect bus. Alternatively, each programmable logic region may have an associated output circuit that is coupled to the interconnect bus. The output circuits may be dynamically controlled by control circuitry. The output circuits may receive control signals from the control circuitry that selectively enable and selectively disable the output circuits. The output circuits may be formed with logic circuitry that ensures that the interconnect bus is not simultaneously driven by the output circuits.
Abstract:
A field programmable gate array (“FPGA”) is provided having integrated application specific integrated circuit (“ASIC”) fabric. The ASIC fabric may be used to implement one or more custom or semi-custom hard blocks within the FPGA. The ASIC fabric can be made up of a “custom region” and an “interface region.” The custom region can implement the custom or semi-custom ASIC design and the interface region can integrate and connect the custom region to the rest of the FPGA circuitry. The custom region may be based on a structured ASIC design. The interface region may allow the ASIC fabric to be incorporated within the hierarchical organization of the FPGA, allowing the custom region to connect to the FPGA circuitry in a seamless manner.
Abstract:
A field programmable gate array (“FPGA”) is provided having integrated application specific integrated circuit (“ASIC”) fabric. The ASIC fabric may be used to implement one or more custom or semi-custom hard blocks within the FPGA. The ASIC fabric can be made up of a “custom region” and an “interface region.” The custom region can implement the custom or semi-custom ASIC design and the interface region can integrate and connect the custom region to the rest of the FPGA circuitry. The custom region may be based on a structured ASIC design. The interface region may allow the ASIC fabric to be incorporated within the hierarchical organization of the FPGA, allowing the custom region to connect to the FPGA circuitry in a seamless manner.
Abstract:
A performance estimation module estimates the performance values of user designs in early phases of compilation and accounts for the performance variability introduced by subsequent compilation phases. The user design is parameterized. The performance estimation model outputs a probability distribution function of estimated performance values of the user design, based upon this parameterization. The performance estimation model is created by parameterizing sample designs. The sample designs are compiled and analyzed to determine their performance values. To account for random variability in compilation phases, the module compiles and analyzes sample designs multiple times. The performance estimation model is created from the relationship between sample designs' performance values and their parameterizations. A regression analysis may be used to determine this relationship. The performance estimation model can be updated with the analysis of compiled user designs. The performance values can include timing, power, and resource consumption.
Abstract:
A visualization displays user designs and performance information at different levels of detail. Related register bits are combined into a metaregister and displayed as a graph node. The set of paths and associated combinatorial logic between two or more metaregisters are collapsed into a metapath and displayed as a graph connection. The set of paths associated with a metapath can be selectively revealed in response to user input. Metapaths can be annotated with performance information of its associated paths, such as timing, area, and power consumption information. The annotated performance information can represent performance information of one or more paths or aggregate attributes of the set of paths. Paths associated with control signals and finite state machines can be identified and displayed as separate graph connections.
Abstract:
A programmable logic device architecture providing efficient configurable functionality to allow the “tie-off” of logic region-wide control signals. This functionality is provided while maintaining the efficiency of region-wide signals, yet allows sufficient flexibility for effective use of register-packing and usage within the region. Methods are given for both sub-region and individual logic element tie-off granularity. In various embodiments, the tie-off logic may be used for logic wide signals used in PLDs having logic elements arranged in regions of logic, sometimes referred to in the industry as either Logic Array Blocks or Complex Logic Blocks.
Abstract:
A field programmable gate array (“FPGA”) is provided having integrated application specific integrated circuit (“ASIC”) fabric. The ASIC fabric may be used to implement one or more custom or semi-custom hard blocks within the FPGA. The ASIC fabric can be made up of a “custom region” and an “interface region.” The custom region can implement the custom or semi-custom ASIC design and the interface region can integrate and connect the custom region to the rest of the FPGA circuitry. The custom region may be based on a structured ASIC design. The interface region may allow the ASIC fabric to be incorporated within the hierarchical organization of the FPGA, allowing the custom region to connect to the FPGA circuitry in a seamless manner.
Abstract:
A CLB-based PLD with logic cells having improved logic, register, arithmetic, logic packing and timing functions and capabilities is disclosed. The CLBs of the PLD are arranged in rows and columns of an array and are interconnect by a plurality of interconnect lines. Each of the plurality of CLBs has a first slice of logic cells and a second slice of logic cells arranged in a first column and a second column. First and second carry chains are provided between each of the logic cells of each column. At least one of the logic cells includes one or more Look Up Tables for implanting logic functions on a set of inputs provided to the one logic cell and an arithmetic logic circuit configured to receive a carry-in signal and to generate a carry-out signal forming part of the first carry chain. In one embodiment, the logic cell further includes a first output register and a second output register and the set of outputs generated by the logic cell are partitioned among the first output register and the second output register. In another embodiment, an output of one of the registers is provided as an input to one of the Look Up Tables of the cell through a register feedback connection. In yet another embodiment, the set of inputs provided to a first and a second of the Look Up Tables are different, enabling a higher degree of logic efficiency or “packing” by enabling each cell to perform logic functions on two different sets of inputs as opposed to only the same set of inputs. Finally, in another embodiment, the arithmetic logic circuit is capable of generating two SUM output signals.
Abstract:
A programmable logic device has registers (“re-timing registers”) associated with interconnection conductors. The re-timing registers are in addition to registers that are conventionally associated with other device elements such as logic and memory cells. Programmable links enable optional data paths through the re-timing registers between disconnected segments of interconnection conductors. Re-timing techniques for optimization of circuit designs seeking to minimize the longest register-to-register path can include positioning of re-timing registers on interconnection conductors. Long interconnection conductors can be used in data paths between device elements with only short segments of interconnection conductors contributing to critical path lengths.
Abstract:
A programmable logic device architecture having logic elements with dedicated hardware to configure the look up tables of the logic element to either perform logic functions or to operate as a register for pipelining. The programmable logic device includes a general interconnect and a plurality of logic array blocks interconnected by the general interconnect. Each of the plurality of logic blocks further includes one or more logic elements. The logic elements each include a first look up table, a second look up table, and dedicated hardware within the logic element to configure the first look table and the second look up table as a register without having to use the general interconnect. In one embodiment, the dedicated hardware includes a plurality of dedicated interconnects within the logic element to configure the two look up tables as a pair of cross coupled muxes or latches when configured as a register.