Abstract:
A portable ultrasound imaging system includes a mobile computing device; a detachable front end component configured for attachment to and communication with the mobile computing device, and configured to transmit and receive ultrasound signals; and programming, when installed on the mobile computing device, being executable by the mobile computing device to cause the mobile computing device to send signals to the front end component causing the front end component to transmit the ultrasound signals, and to receive signals from the front end component resulting from the front end component receiving the receive ultrasound signals, and process the receive signal and display an ultrasound image resulting from the processing. The front end component is configured to be directly joined with the mobile computing device and directly connected, without the use of an external wire or cable.
Abstract:
A wellbore fluid is an aqueous carrier liquid with first and second hydrophobic particulate materials suspended therein. The first hydrophobic particles have a higher specific gravity than the second hydrophobic particles and the fluid also comprises a gas to wet the surface of the particles and bind them together as agglomerates. The fluid may be a fracturing fluid or gravel packing fluid and the first particulate material may be proppant or gravel. The lighter second particulate material and the gas both reduce the density of the agglomerates which form so that they settle more slowly from the fluid, or are buoyant and do not settle. This facilitates transport and placement in a hydraulic fracture or gravel pack. One application of this is when fracturing a gas-shale with slickwater. The benefit of reduced settling is better placement of proppant so that a greater amount of the fracture is propped open.
Abstract:
A wellbore fluid comprises an aqueous carrier liquid, hydrophobic fibers suspended therein, hydrophobic particulate material also suspended in the carrier liquid, and a gas to wet the surfaces of the particles and fibers and bind them together as agglomerates. The wellbore fluid may be a slickwater fracturing fluid and may be used for fracturing a tight gas reservoir. Using a combination of hydrophobic particulate material, hydrophobic fibers and gas inhibits settling out of the particulate material from an aqueous liquid. Because the gas acts to wet the surfaces of both materials and agglomerates them, the particulate material is made to adhere to the fibers; the fibers form a network which hinders settling of the particulate material adhering to them, and the agglomerates contain gas and so have a bulk density which is less than the specific gravity of the solids contained in the agglomerates.
Abstract:
A PCD cutting element for use in earth boring drill bits where the interstices remote from the working surface are filled with a catalyzing material and the interstices adjacent to the working surface are substantially free of the catalyzing material is described. An intermediate region between the substantially free portion and filled portion has a plurality of generally conically sectioned catalyst-free projections which taper down, extending to a second depth from the planar working surface, preferably about 0.5 times or more of the first depth.
Abstract:
A cutting structure for a rotary drag-type drill bit includes a preform cutting element mounted on a carrier which, in use, is mounted on the drill bit and comprises a front facing table of superhard material bonded to a less hard substrate. A portion of the carrier on which the preform cutting element is mounted is shaped, adjacent the cutting element, for engagement by a chip of formation material being removed by the cutting element from the formation being drilled so as to tend to break the chip away from the surface of the formation. A portion of the carrier, or a portion of the bit body itself, may also be shaped, adjacent the cutting element, to direct to a location in front of the cutting element a flow of drilling fluid which impinges on said surface so as to assist in chip removal.
Abstract:
A PCD cutting element for use in earth boring drill bits where die interstices remote from the working surface are filled with a catalyzing material and the interstices adjacent to the working surface are substantially free of the catalyzing material is described. An intermediate region between the substantially free portion and filled portion has a plurality of generally conically sectioned catalyst-free projections which taper down, extending to a second depth from the planar working surface, preferably about 0.5 times or more of the first depth.
Abstract:
Gravel packing a region of a wellbore is carried out using one or more hydrophobically-surfaced particulate materials as the gravel. Placing the gravel pack is carried out using an aqueous carrier liquid, with hydrophobic particulate material suspended in the liquid and a gas to wet the surface of the particles and bind them together as agglomerates. The presence of gas lowers the density of the agglomerates relative to the particulate material in them, so that transport of the particulates is improved. The invention enables the placing of longer, uniformly packed, gravel packs, especially in horizontal and near horizontal wellbores.
Abstract:
A method is described for treating a subterranean formation with a low viscosity fluid system that contains a viscoelastic surfactant at a concentration too low to viscosify the fluid, but that is concentrated in the formation so that the fluid system gels. The fluid also contains a formation-dissolving agent. The fluid is used in acidizing, acid fracturing, and diversion.
Abstract:
Embodiments of the present invention relate to systems and methods for communicating pharmaceutical verification information between a server and a node using a network. A node includes a pharmaceutical identification and verification system. The verification information includes a known spectral signature of a known pharmaceutical and a corresponding known pharmaceutical name and dosage strength of the known pharmaceutical. The server stores the verification information in a server database. The node receives the verification information from the server, stores the verification information in the client database, reads a pharmaceutical name and dosage strength from a container enclosing a pharmaceutical, obtains a detected spectral signature for the pharmaceutical, and compares the detected spectral signature to the at least one known spectral signature. The pharmaceutical identification and verification system includes a static multimodal multiplex spectrometer. The verification information can also include a spectral signature of a known container.