Abstract:
A monitoring device for spatial areas comprises a receiver, to which an anamorphotic optical system, is assigned. The monitoring device also has a transmitter which scans a field of view assigned to the receiver using radiation pulse beams. A distance image of an object in the field of view can be produced by way of a radiation transit time determination with short-term integration carried out in an evaluation unit.
Abstract:
A three dimensional star coupler for interconnecting a first bunch of optical waveguides such as fibers to a second bunch of optical waveguides or optical fibers characterized by a mixing element being a planar waveguide having a thickness approximately equal to the fiber diameter and having input and output surfaces coupled to the incoming and outgoing fibers which are all supported in the same plane. The mixing element consists for example of an elongated rectangular plate but also can have a configuration of arcs of a circular configuration.
Abstract:
The invention describes an optical deflection element for the refractive production of a spatially structured bundle of light beams fanned concentrically to an optical axis of the deflection element. The optical deflection element has a base body made of optically transparent material, and has a light input and output side. The light input side is configured such that a primary bundle of light beams can be coupled in the base body. The light output side has a cylindrically symmetrical contour, which defines a recess in the base body. The fanning of the primary bundle of light beams is achieved by refraction on rotationally symmetric interfaces, which are variably inclined relative to the optical axis. The invention further relates to an optical measuring device for the three-dimensional measurement of a cavity in an object and a method for producing a concentrically fanned, spatially structured bundle of light beams.
Abstract:
An optical device, such as the switch, for controlling the passage of a light beam into and out of an end face of a waveguide such as a glass fiber includes utilizing either a layer or drop of liquid material to control the light passage. The liquid material can be a layer, which has changeable optical properties, which can occur by applying a magnetic field, heat or electrical field or the material can be a layer of electrolyte material which will precipitate a reflective layer or electrochromic layer in response to an application of an electrical field. In another embodiment, the liquid material may be moved into and out of engagement with the end face to change the reflective nature of the end face and to cause decoupling of light from the end face or block the transmission of light.
Abstract:
The planar waveguide Bragg lens and a component utilizing a planar waveguide Bragg lens with a greater acceptance angle characterized by several grating structures being arranged in series and having an inclination towards one another for varying angles of incidence. In one embodiment, each of the grating structures are circular arc segments which are interconnected together to form a single grating structure having curved segments which also has a greater acceptance angle than a conventional planar waveguide Bragg lens.
Abstract:
A planar waveguide lens is characterized in that the same is a gradient lens, whereby the refractive index profile transversely to the lens axis extends approximately parabolically. The lens may be constructed to be multi-mode or may be constructed to be single-mode in the spatial direction perpendicular to the lens axis and perpendicular to the axis in which the indicated change of the refractive index profile extends. Grid structures are provided for dividing the light. The grid structures may be permanent, electro-optically produced or acousto-optically produced. For single mode fibers, the grid structures are produced by acoustic surface waves, while for multi-mode fibers, the grid structures are produced by way of acoustical volume waves.
Abstract:
A surface of an object is irradiated using an infrared light beam. The infrared light beams reflected at the object are received by an infrared camera which captures a first intensity of the reflected infrared light beams on a detector of the infrared camera. Ambient radiation reflected at the object and the characteristic radiation of the object are detected by capturing a second intensity of the reflected ambient radiation and the characteristic radiation of the object on the detector of the infrared camera. The emissivity of the object is calculated based on the first intensity and the second intensity.
Abstract:
A surface of an object is irradiated using an infrared light beam. The infrared light beams reflected at the object are received by an infrared camera which captures a first intensity of the reflected infrared light beams on a detector of the infrared camera. Ambient radiation reflected at the object and the characteristic radiation of the object are detected by capturing a second intensity of the reflected ambient radiation and the characteristic radiation of the object on the detector of the infrared camera. The emissivity of the object is calculated based on the first intensity and the second intensity.
Abstract:
In one aspect, an optical sensor is used to detect defects, which can appear on smooth surfaces, is provided. The sensor includes a telecentric laser scanner and a detection unit. The scanner includes a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, and a telecentric optical system for guiding illumination and detection beams the detection unit includes an optical detector system, a central diaphragm, which is concentrically positioned in the vicinity of the optical detector system in the direction toward the telecentric laser scanner, a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, and a slit diaphragm arranged upstream of the photomultiplier.
Abstract:
In one aspect, an optical sensor is used to detect defects, which can appear on smooth surfaces, is provided. The sensor includes a telecentric laser scanner and a detection unit. The scanner includes a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, and a telecentric optical system for guiding illumination and detection beams the detection unit includes an optical detector system, a central diaphragm, which is concentrically positioned in the vicinity of the optical detector system in the direction toward the telecentric laser scanner, a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, and a slit diaphragm arranged upstream of the photomultiplier.