Abstract:
Various embodiments are provided for dilute source enabled vertical organic light emitting transistors. In various embodiments, a display panel includes an array of pixels. In one embodiment, among others, at least one pixel includes a switching transistor and a driving transistor coupled to the switching transistor, where the driving transistor is configured to emit light responsive to activation by the switching transistor. The driving transistor may be a dilute source enabled vertical organic light emitting transistor (DS-VOLET). The switching transistor may include a dilute source enabled vertical-field effect transistor (DS-VFET). In another embodiment, a double dilute source enabled vertical-field effect transistor (DS-VFET) includes a first DS-VFET coupled to a second DS-VFET.
Abstract:
Various embodiments are provided for semiconductor devices including an electrically percolating source layer and methods of fabricating the same. In one embodiment, a semiconductor device includes a gate layer, a dielectric layer, a memory layer, a source layer, a semiconducting channel layer, and a drain layer. The source layer is electrically percolating and perforated. The semiconducting channel layer is in contact with the source layer and the memory layer. The source layer and the semiconducting channel layer form a gate voltage tunable charge injection barrier.
Abstract:
Various embodiments are provided for dilute source enabled vertical organic light emitting transistors. In various embodiments, a display panel includes an array of pixels. In one embodiment, among others, at least one pixel includes a switching transistor and a driving transistor coupled to the switching transistor, where the driving transistor is configured to emit light responsive to activation by the switching transistor. The driving transistor may be a dilute source enabled vertical organic light emitting transistor (DS-VOLET). The switching transistor may include a dilute source enabled vertical-field effect transistor (DS-VFET). In another embodiment, a double dilute source enabled vertical-field effect transistor (DS-VFET) includes a first DS-VFET coupled to a second DS-VFET.
Abstract:
Embodiments of the invention relate to vertical field effect transistor that is a light emitting transistor. The light emitting transistor incorporates a gate electrode for providing a gate field, a first electrode comprising a dilute nanotube network for injecting a charge, a second electrode for injecting a complementary charge, and an electroluminescent semiconductor layer disposed intermediate the nanotube network and the electron injecting layer. The charge injection is modulated by the gate field. The holes and electrons, combine to form photons, thereby causing the electroluminescent semiconductor layer to emit visible light. In other embodiments of the invention a vertical field effect transistor that employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.
Abstract:
Embodiments of the invention relate to vertical field effect transistor that is a light emitting transistor. The light emitting transistor incorporates a gate electrode for providing a gate field, a first electrode comprising a dilute nanotube network for injecting a charge, a second electrode for injecting a complementary charge, and an electroluminescent semiconductor layer disposed intermediate the nanotube network and the electron injecting layer. The charge injection is modulated by the gate field. The holes and electrons, combine to form photons, thereby causing the electroluminescent semiconductor layer to emit visible light. In other embodiments of the invention a vertical field effect transistor that employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.
Abstract:
Various embodiments are provided for semiconductor devices including an electrically percolating source layer and methods of fabricating the same. In one embodiment, a semiconductor device includes a gate layer, a dielectric layer, a memory layer, a source layer, a semiconducting channel layer, and a drain layer. The source layer is electrically percolating and perforated. The semiconducting channel layer is in contact with the source layer and the memory layer. The source layer and the semiconducting channel layer form a gate voltage tunable charge injection barrier.
Abstract:
Embodiments of the invention relate to vertical field effect transistor that is a light emitting transistor. The light emitting transistor incorporates a gate electrode for providing a gate field, a first electrode comprising a dilute nanotube network for injecting a charge, a second electrode for injecting a complementary charge, and an electroluminescent semiconductor layer disposed intermediate the nanotube network and the electron injecting layer. The charge injection is modulated by the gate field. The holes and electrons, combine to form photons, thereby causing the electroluminescent semiconductor layer to emit visible light. In other embodiments of the invention a vertical field effect transistor that employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.
Abstract:
Embodiments of the invention relate to field effect transistors. The field effect transistor includes a gate electrode for providing a gate field, a first electrode including a conductive material having a low carrier density and a low density of electronic states, a second electrode, and a semiconductor. Contact barrier modulation includes barrier height lowering of a Schottky contact between the first electrode and the semiconductor. In some embodiments of the invention, a vertical field effect transistor employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.