摘要:
An object of the present invention is to provide a composite soft magnetic sintered material that has high density, high mechanical strength and high relative magnetic permeability at high frequencies and, in order to achieve this object, the present invention provides a method of producing the composite soft magnetic sintered material, which comprises mixing a composite soft magnetic powder, that consists of iron powder, Fe—Si based soft magnetic iron alloy powder, Fe—Al based soft magnetic iron alloy powder, Fe—Si—Al based soft magnetic iron alloy powder, Fe—Cr based soft magnetic iron alloy powder or nickel-based soft magnetic alloy powder (hereinafter these powders are referred to as soft magnetic metal powder) of which particles arc coated with a ferrite layer which has a spinel structure, with 0.05 to 1.0% by weight of silicon dioxide powder having a mean powder particle size of 100 nm or less and sintering the mixed powder after compression molding, or processing two or more kinds of the composite soft magnetic powders, of which particles are coated with ferrite layer having a spinel structure of a different compositions, by compression molding and sintering.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
This rare earth magnet having high strength and high electrical resistance has a structure including an R—Fe—B-based rare earth magnet particles 18 which are enclosed with a high strength and high electrical resistance composite layer 12. The high strength and high electrical resistance composite layer 12 is constituted from a glass-based layer 16 that has a structure comprising a glass phase or R oxide particles 13 dispersed in glass phase, and R oxide particle-based mixture layers 17 that are formed on both sides of the glass-based layer 16 and contain an R-rich alloy phase 14 which contains 50 atomic % or more of R in the grain boundary of the R oxide particles.
摘要:
An R--T--M alloy material, wherein R is at least one rare earth metal including Y, T is Fe or an Fe component partially replaced by Co or Ni, M is B or a B component partially replaced by C as primary components is prepared by heating the alloy at a temperature from room temperature to a specific temperature of less than 500.degree. C. in a non-oxidizing atmosphere and holding it at the given temperature, if necessary; performing hydrogenation by holding the alloy in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas at a specific temperature in the range of 500-1,000.degree. C.; medial annealing the alloy by holding the R--T--M alloy after the hydrogenation step in an inert gas atmosphere at a specific temperature in the range of 500-1,000.degree. C.; and dehydrogenating the alloy by holding the alloy in a vacuum of less than 1 Torr for dehydrogenation, and then cooling the alloy.
摘要:
A valve seat made of an Fe-based sintered alloy excellent in wear resistance and having a reduced counterpart valve attack property is disclosed, which comprises a base comprising 15-40% by weight of Cu, 0.3-12% by weight of Ni and 0.0005-3.0% by weight of C, and further comprising 0.1-10% by weight of Co and 0.1-10% by weight of Cr when necessary, with the balance being Fe and inevitable impurities, the base having a structure which comprises an Fe-based alloy phase 1 composed of Fe as a main component combined by a Cu-based alloy phase 2 composed of Cu as a main component, wherein hard particles phase 3 having MHV of 500-1700 is dispersed in the base. The Fe-based alloy phase 1 is an Fe alloy phase which comprises Ni, Cu and C with Fe having more than 50% by weight, while the Cu-based alloy phase 2 is a Cu alloy phase which comprises Ni, Fe and C with Cu having more than 50% by weight. At the same time, the contents of Ni and C included in the Fe-based alloy phase are more than those of Ni and C included in the Cu-based alloy phase.
摘要:
A method of manufacturing a composite soft magnetic material having excellent magnetic characteristics, a high strength, and a low core loss, having steps of: heating a silicon resin film-coated soft magnetic powder at a temperature of from the room temperature to 150° C. obtained by forming a thin silicon resin film having a thickness of from 0.1 μm to 5 μm on a surface of a soft magnetic powder or an insulating film-coated soft magnetic powder; filling the silicon resin film-coated soft magnetic powder at a temperature of from the room temperature to 150° C. in a mold which is heated at a temperature of from 100° C. to 150° C. and performing compaction at a pressure of from 600 MPa to 1500 MPa, thereby obtaining a compact; and curing the compact at a temperature of from 400° C. to 600° C.
摘要:
A valve seat made of an Fe-based sintered alloy excellent in wear resistance and having a reduced counterpart valve attack property is disclosed, which comprises a base comprising 15-40% by weight of Cu, 0.3-12% by weight of Ni and 0.0005-3.0% by weight of C, and further comprising 0.1-10% by weight of Co and 0.1-10% by weight of Cr when necessary, with the balance being Fe and inevitable impurities, the base having a structure which comprises an Fe-based alloy phase 1 composed of Fe as a main component combined by a Cu-based alloy phase 2 composed of Cu as a main component, wherein hard particles phase 3 having MHV of 500-1700 is dispersed in the base. The Fe-based alloy phase 1 is an Fe alloy phase which comprises Ni, Cu and C with Fe having more than 50% by weight, while the Cu-based alloy phase 2 is a Cu alloy phase which comprises Ni, Fe and C with Cu having more than 50% by weight. At the same time, the contents of Ni and C included in the Fe-based alloy phase are more than those of Ni and C included in the Cu-based alloy phase.
摘要:
An engine fuel essentially consisting of alcohol may contain a relatively large amount of water in comparison with conventional gasoline and diesel oil, so that when water possibly penetrates into a clearance between an intake valve seat and a mounting reception portion of a cylinder head where the valve seat is to be mounted when the engine fuel essentially consisting of alcohol together with air is introduced into a cylinder through an air inlet having the intake valve seat. As a plating layer 14 is formed on the surface of an iron-based valve seat main body 17 provided at a mounting reception portion 13 formed at an air inlet 6 of a cylinder head 2 made of an aluminum alloy, the plating layer 14 intervenes between the cylinder head 2 and the valve seat main body 17, so that a potential difference between the dissimilar metals for the mounting reception portion 13 and the valve seat main body 17 is reduced through water, thereby preventing galvanic corrosion.