Abstract:
Inexpensive Mn or Mg ferrites may be used as negative temperature coefficient thermistors. Fabrication of devices with the desired high temperature coefficients is facilitated by a processing method which forms a thin layer of oxidized and high resistivity material on a low resistivity layer of ferrite material.
Abstract:
A method of producing III-V materials by reducing a complex salt in a hydrogen atmosphere is shown. For example, complex salts reduce to InP or GaAs. The salts are conveniently prepared by coprecipitation from a salt solution or by other methods. The stoichiometry can be modified by applying an overpressure of the more volatile element or elements during reduction.
Abstract:
Magnetic material is made by reducing an oxide powder compact having at least one nonreducible oxide species. A typical mixture of nickel, iron, and aluminum oxides selectively reduces to form a material having a typical permeability of 10 or more and high resistivity. Reduced eddy current losses occur in devices made from such material.
Abstract:
A method for electroplating a nickel-antimony alloy comprising from 1-70 weight percent antimony and the balance nickel comprises electroplating the alloy from a solution containing a soluble nickel salt and a soluble mixed antimony alkali metal salt of a polybasic organic acid at a pH in the range of about from 1 to 6. The substrate to be plated is made the cathode and an inert anode is employed.
Abstract:
A carbon transmitter utilizes an electrode prepared by in situ reaction between substrate copper and introduced sulfur. Good surface adhesion between the resulting CuS layer and the substrate is assured by use of a two-phase cobalt/copper substrate.
Abstract:
A new technique for forming non-rectifying electrical contacts to III-V semiconductor materials, without the use of dopants or of an alloying procedure, is disclosed. In accordance with this technique, an electrical contact is formed simply by depositing a region of material (onto the semiconductor material) having a composition which includes at least one metal element and at least one of three specific Group V elements, i.e., P, As, or Sb, and having a bulk electrical resistivity equal to or less than about 250 .mu..OMEGA.-cm. Alternatively, a contact is formed by depositing nickel, or a nickel-containing material essentially free of gold and silver, and having a composition which does not include any of the three Group V elements. The nickel, or nickel-containing material, is then reacted with the substrate to form a compound having a composition which includes nickel as well as one of the three Group V elements.
Abstract:
A novel method of producing mixed metal oxide powder (e.g., ferrite powder, or high temperature superconductor powder such as YBa.sub.2 Cu.sub.3 O.sub.x powder) is disclosed. The method comprises forming an intimate mixture of appropriate metal salts (e.g., nitrates and acetates), at least one of which is an oxidizing agent with respect to at least one of the others, and heating the mixture to a reaction temperature such that an exothermic redox reaction occurs. Appropriate choice of oxidizing and reducing agents permits control of heat of reaction and reaction temperature. The product of the reaction typically is a precursor of the desired mixed oxide, the precursor typically consisting essentially of the metal constituents of the mixed oxide and oxygen. Heat treatment in an O.sub.2 -containing atmosphere transforms the precursor into the desired mixed oxide powder. The thus produced powder can then be used in conventional fashion, e.g., to produce bodies therefrom by pressing and/or sintering.
Abstract:
In the interest of mechanical strength and hardness, metallic bodies desirably contain dispersed particles whose diameter preferably is in the range of 50-10,000 Angstrom. A disclosed method for producing such metallic bodies calls for preparing a solution of mixed salts of elements, removing the solvent, transforming to metallic form, and compacting under pressure. Strength of a resulting metallic body may be further developed by aging and, optionally, cold deformation prior to aging.Use of the disclosed method is indicated especially to produce bodies comprising immiscible elements. For example, when Mo is dispersed in Cu, high strength and electrical conductivity are realized.
Abstract:
Long term protection against oxidation is provided to fine particles of oxidizable metals and metallic alloys by treating the essentially oxide-free particles with a solution of certain organic materials in a nonreactive organic solvent. These organic materials are ureas, thioureas, isocyanates or isothiocyanates with at least one organic substituent each containing at least two carbons. Particles of both hard and soft magnetic metals and alloys have been protected by this treatment.
Abstract:
Contacts comprising nickel and a glass-forming additive have electrical contact properties which render them suitable as replacements for gold contacts; disclosed contacts have low contact resistance even after prolonged exposure to an oxidizing ambient. The glass-forming additive is one or several of the elements boron, silicon, germanium, phosphorus, arsenic, antimony, or bismuth, and contacts are readily formed, e.g., as layers on substrates. A crystallographically disordered structure is produced in a contact surface layer at least upon exposure to an oxidizing ambient; alternatively, such desired structure can be produced by ion bombardment and even in the absence of glass-forming additives.