摘要:
Provided is a polycarbonate resin composition capable of providing a molded body that has a high light transmittance and high light-diffusing property, can be inhibited from yellowing, and has high thin-wall flame retardancy, and a polycarbonate resin molded body obtained by molding the polycarbonate resin composition. The flame-retardant light-diffusing polycarbonate resin composition has a viscosity-average molecular weight of 17,000 or more and includes, with respect to 100 parts by mass of a polycarbonate (A) formed of 10 to 100 parts by mass of a branched polycarbonate (A-1) and 90 to 0 parts by mass of an aromatic polycarbonate (A-2), 0.1 to 5 parts by mass of a light diffuser (B), 0.01 to 1.0 part by mass of a flame retardant (C), 0 to 0.5 part by mass of a polytetrafluoroethylene (D), and 0 to 2 parts by mass of a polyorganosiloxane (E), and the polycarbonate resin molded body is obtained by molding the polycarbonate resin composition.
摘要:
Provided is a polycarbonate resin composition capable of providing a molded body that has a high light transmittance and high light-diffusing property, can be inhibited from yellowing, and has high thin-wall flame retardancy, and a polycarbonate resin molded body obtained by molding the polycarbonate resin composition. The flame-retardant light-diffusing polycarbonate resin composition has a viscosity-average molecular weight of 17,000 or more and includes, with respect to 100 parts by mass of a polycarbonate (A) formed of 10 to 100 parts by mass of a branched polycarbonate (A-1) and 90 to 0 parts by mass of an aromatic polycarbonate (A-2), 0.1 to 5 parts by mass of a light diffuser (B), 0.01 to 1.0 part by mass of a flame retardant (C), 0 to 0.5 part by mass of a polytetrafluoroethylene (D), and 0 to 2 parts by mass of a polyorganosiloxane (E), and the polycarbonate resin molded body is obtained by molding the polycarbonate resin composition.
摘要:
A method for controlling the thickness of a thin crystal film which is grown in a vacuum atmosphere, comprising the steps of: generating an electron beam in the vacuum atmosphere; directing the electron beam thus generated to a crystal being grown to obtain a diffraction pattern of the crystal; detecting the variations in time of the intensity of the diffraction pattern thus obtained; obtaining the number of oscillations from the variations thus detected; and interrupting the growth of the crystal in synchronism with the oscillations of the intensity when the number reaches a predetermined number. The composition ratio of a mixed crystal can be also determined by the ratio among the frequency of oscillations of each crystal which constitutes the mixed crystal. The oscillations of the intensity of the RHEED pattern can be observed more than 400 times so that the thickness of the grown thin crystal film can be measured with the accuracy higher than 1000 .ANG. in terms of the mono-layer.
摘要:
Provided are an aromatic polycarbonate resin composition and molded articles for optical use using the same, the resin composition having improved light transmittance and luminance and, at the same time, being able to withstand molding even at a high temperature.More specifically, provided are the aromatic polycarbonate resin composition and molded articles for optical use using the same, the resin composition comprising 100 parts by mass of an aromatic polycarbonate resin (A) and 0.1 to 5 parts by mass of polyoxytetramethylene-polyoxyethylene glycol (B).
摘要:
Provided are an aromatic polycarbonate resin composition and molded articles for optical use using the same, the resin composition having improved light transmittance and luminance and, at the same time, being able to withstand molding even at a high temperature.More specifically, provided are the aromatic polycarbonate resin composition and molded articles for optical use using the same, the resin composition comprising 100 parts by mass of an aromatic polycarbonate resin (A) and 0.1 to 5 parts by mass of polyoxytetramethylene-polyoxyethylene glycol (B).
摘要:
A semiconductor device comprises a superlattice semiconductor portion having a plurality of pairs of superlattice semiconductor thin films for forming step differences of band edge energy. The pairs of the thin films are laminated such that parameters which determine the structure of the thin films are monotonically changed in the direction of the lamination of the thin films. Electrodes are disposed to apply an electric field across both ends of the superlattice semiconductor portion. The semiconductor device has a good negative resistance characteristic and a large design freedom of semiconductor device.