Abstract:
A latch assembly includes a chassis, a latch bolt moveably mounted on the chassis and having a closed position for retaining a striker and an open position for releasing the striker, a pawl having an engaged position at which the pawl is engaged with the latch bolt to hold the latch bolt in the closed position and a disengaged position at which the pawl is disengaged from the latch bolt, thereby allowing the latch bolt to move to the open position, an eccentric arrangement defining an eccentric axis and a pawl axis remote from the eccentric axis. The eccentric arrangement is rotatable about the eccentric axis, and the pawl is rotatable about the pawl axis. When the pawl moves from the engaged position to the disengaged position, the eccentric arrangement rotates in one of a clockwise and a counter-clockwise direction about the eccentric axis. With the pawl in the engaged position, a force applied to the pawl by the latch bolt creates a turning moment on the eccentric arrangement in the one of the clockwise and counter-clockwise direction, and the eccentric arrangement is prevented from rotating in said one of the clockwise and counter-clockwise direction by a moveable abutment.
Abstract:
A latch mechanism includes a latch plate associated with a first object, and a claw rotatably attached to the latch plate. A toggle link is rotatably attached to the latch plate. A primary pawl is rotatably attached to the toggle link. The primary pawl retains the claw. A secondary pawl is rotatably attached to the latch plate. The secondary pawl retains the toggle link.
Abstract:
A mechanism includes a movable member and a reluctance motor having an armature, a coil and two pole pieces, the armature being operably coupled to the movable member. The mechanism also has a first condition in which the reluctance motor is powered and the moveable member engages the pole pieces to magnetically hold the moveable member in a first position and a second condition in which the reluctance motor is unpowered and the moveable member is in a second position disengaged from the pole pieces. With the mechanism in the second position, powering of the reluctance motor causes the armature to rotate to drive the moveable member to the first position.
Abstract:
A latch assembly includes a chassis, a latch bolt moveably mounted on the chassis and having a closed position for retaining a striker and an open position for releasing the striker, a pawl having an engaged position at which the pawl is engaged with the latch bolt to hold the latch bolt in the closed position and a disengaged position at which the pawl is disengaged from the latch bolt, thereby allowing the latch bolt to move to the open position, an eccentric arrangement defining an eccentric axis and a pawl axis remote from the eccentric axis. The eccentric arrangement is rotatable about the eccentric axis, and the pawl is rotatable about the pawl axis. When the pawl moves from the engaged position to the disengaged position, the eccentric arrangement rotates in one of a clockwise and a counter-clockwise direction about the eccentric axis. With the pawl in the engaged position, a force applied to the pawl by the latch bolt creates a turning moment on the eccentric arrangement in the one of the clockwise and counter-clockwise direction, and the eccentric arrangement is prevented from rotating in said one of the clockwise and counter-clockwise direction by a moveable abutment.
Abstract:
A scissor apparatus for a latch assembly, which includes a spring comprising a plurality of fingers for controlling the motion one or more sliders associated with the latch assembly, and wherein the spring comprises a spring control independent of the actuation of such sliders. The fingers are generally integrated with the spring. Such a one-piece spring can be implemented as a stamped component with 2-off, 3-off or 6-off fingers to control the motion of the sliders. The stamped spring can clip onto existing latch assembly components in order to promote retention, and overcome friction with the latch assembly and return the sliders to a neutral position thereof.
Abstract:
A latch assembly includes a chassis, a latch bolt moveably mounted on the chassis and having a closed position for retaining a striker and an open position for releasing the striker, a pawl having an engaged position at which the pawl is engaged with the latch bolt to hold the latch bolt in the closed position and a disengaged position at which the pawl is disengaged from the latch bolt, thereby allowing the latch bolt to move to the open position, an eccentric arrangement defining an eccentric axis and a pawl axis remote from the eccentric axis. The eccentric arrangement is rotatable about the eccentric axis, and the pawl is rotatable about the pawl axis. When the pawl moves from the engaged position to the disengaged position, the eccentric arrangement rotates in one of a clockwise and a counter-clockwise direction about the eccentric axis. With the pawl in the engaged position, a force applied to the pawl by the latch bolt creates a turning moment on the eccentric arrangement in the one of the clockwise and counter-clockwise direction, and the eccentric arrangement is prevented from rotating in said one of the clockwise and counter-clockwise direction by a moveable abutment.
Abstract:
An injection molding method and system for an electrical circuit utilized in vehicle door latch mechanisms is disclosed herein. A mold is generally provided in which a mold cavity is formed therein from walls of the mold. An electrical circuit associated with vehicle door latch and/or integrated with the vehicle door latch can be located within the mold cavity. A plastics material can then be injection molded into the mold cavity of the mold, wherein the plastics material covers and seals the electrical circuit to provide insulation and environmental protection to the electrical circuit.
Abstract:
A latch assembly includes a chassis, a latch bolt moveably mounted on the chassis and having a closed position for retaining a striker and an open position for releasing the striker, a pawl having an engaged position at which the pawl is engaged with the latch bolt to hold the latch bolt in the closed position and a disengaged position at which the pawl is disengaged from the latch bolt, thereby allowing the latch bolt to move to the open position, an eccentric arrangement defining an eccentric axis and a pawl axis remote from the eccentric axis. The eccentric arrangement is rotatable about the eccentric axis, and the pawl is rotatable about the pawl axis. When the pawl moves from the engaged position to the disengaged position, the eccentric arrangement rotates in one of a clockwise and a counter-clockwise direction about the eccentric axis. With the pawl in the engaged position, a force applied to the pawl by the latch bolt creates a turning moment on the eccentric arrangement in the one of the clockwise and counter-clockwise direction, and the eccentric arrangement is prevented from rotating in said one of the clockwise and counter-clockwise direction by a moveable abutment.
Abstract:
A declutching mechanism includes a chassis, a first gear rotatable relative to the chassis about a first gear axis fixed relative to the chassis, and a second gear selectively engageable with the first gear. The declutching mechanism includes an eccentric arrangement having a first shaft with a first shaft axis and a second shaft with a second shaft axis offset from the first shaft axis. The first shaft is non-rotatably fixed to the second shaft and selectively rotatably mounted in the chassis. The second gear is rotatably mounted on the second shaft. A holding feature selectively holds the eccentric arrangement in a first position. With the eccentric arrangement being held in the first position by the holding feature, the first gear and the second gear are in meshing engagement. With the eccentric arrangement being released by the holding feature, gear separating forces cause the eccentric arrangement to rotate about the first axis to a second position, thereby disengaging the first gear and the second gear.
Abstract:
A latch system includes a latch bolt, a pawl for releasably retaining the latch bolt in a closed position, a first release member, a first transmission path connecting the first release member to the pawl, a second release member, and a second transmission path connecting the second release member to the pawl. A portion of the first transmission path and a portion of the second transmission path have a common portion, the common portion including a lock link having a first position at which the lock link completes the first transmission path and the second transmission path such that operation of either the first release member or the second release member opens a latch, and the lock link having a second position at which the lock link breaks the first transmission path and the second transmission path such that a single operation of either the first release member or the second release member does not open the latch. The latch system includes a first device capable of holding the lock link in the second position, a second device capable of holding the lock link in the second position, and a third device capable of holding the lock link in the second position.