Abstract:
An imprint apparatus for imprinting a mold pattern onto a substrate or a member on the substrate includes a light source for irradiating a surface of the mold disposed opposite to the substrate and a surface of the substrate with light; an optical system for guiding the light from the light source to the surface of the mold and the surface of the substrate and guiding reflected lights from these surfaces to a spectroscope; a spectroscope for dispersing the reflected lights guided by the optical system into a spectrum; and an analyzer for analyzing a distance between the surface of the mold and the surface of the substrate. The analyzer calculates the distance between the surface of the mold and the surface of the substrate by measuring a distance between the surface of the mold and a surface formed at a position away from the surface of the mold.
Abstract:
A pattern forming method for forming an imprinted pattern on a coating material disposed on a substrate with a pattern provided to a mold. The method includes preparing a mold provided with a first surface including a pattern area, a second surface located opposite from the first surface, and an alignment mark provided at a position at which the alignment mark is away from the first surface, contacting the pattern area of the mold with the coating material disposed on the substrate, obtaining information about positions of the mold and the substrate by using the alignment mark and a mark provided to the substrate in a state in which the coating material is disposed on the substrate at a portion where the alignment mark and the substrate are opposite to each other, and effecting alignment of the substrate with the mold in an in-plane direction of the pattern area, on the basis of the information in a state in which the pattern area and the coating material contact each other.
Abstract:
Provided is an imaging apparatus using Fourier-domain optical coherence tomography, the imaging apparatus removing noises caused by the autocorrelation component of returning light to obtain a high-resolution tomographic image. A first switching unit 17 switches a first state in which returning light 12 is combined with reference light (a state in which the returning light 12 is conducted to a combining unit 22) and a second state different from the first state (a state in which the light path of the returning light 12 is blocked or changed). A controlling unit 18 controls the switching unit 17 to change the first and the second state. A interferometric information acquiring unit 19 acquires interferometric information on the returning light 12 and the reference light 14 using the reference light 14 or the returning light 12 detected by the detecting unit 16 in the second state and the combined light 15.
Abstract:
A mold capable of a highly accurate alignment with a member to be processed in such a state that a photocurable resin material is disposed between the mold and the member to be processed, and is constituted by a substrate 2010 formed of a first material and an alignment mark 2102 formed of a second material different from the first material. The first material and the second material have transmissivities to light in a part of an ultraviolet wavelength range. The second material has a refractive index of not less than 1.7.
Abstract:
In an OCT apparatus used in ophthalmology, if a working distance between an eye to be inspected and an objective lens varies, a shape of an obtained tomographic image is changed. This means that the OCT apparatus cannot be used for examining a variation of eyeball shapes. Provided is an optical coherence tomographic imaging method, including: acquiring a first distance between the eye to be inspected and the objective lens, corresponding to first tomographic image of the eye to be inspected; and correcting the first tomographic image to be second tomographic image corresponding to a second distance between the eye to be inspected and the objective lens, which is different from the first distance.
Abstract:
A tomographic imaging apparatus includes an irradiation unit configured to irradiate with a plurality of measurement light beams, a sensor configured to convert into an electric signal a plurality of combined light beams via an optical imaging system by making return light beams from an inspection target, which are generated due to the plurality of measurement light beams, interfere with reference light beams, an output unit configured to output light beams of a single wavelength based on a wavelength width of the plurality of measurement light beams, and a generation unit configured to generate a tomographic image from an electric signal acquired by the sensor via the imaging optical system, based on a position of the light beam of the single wavelength on the sensor.
Abstract:
There is provided an ophthalmologic apparatus having a tracking function that can select a fundus image that is less affected by eye motion to reduce burdens on an operator/a patient in fundus imaging, wherein the ophthalmologic apparatus picks up a first fundus image (202), extracts a characteristic point as a template from the first fundus image (203), executes pattern matching on a second fundus image (205) to determine presence/absence of eye motion, and decides a tracking template image (207).
Abstract:
An OCT apparatus that photographs with a plurality of measuring beams concurrently has a mechanism for adjusting the optical path length of a reference beam for each measuring beam. Accordingly, when tomographic images photographed in this manner are displayed side by side, because the depth of photographing varies from one tomographic image to another, it is difficult for an operator to comprehend the positional relation between the photographed images. In displaying tomographic images acquired with a plurality of measuring beams, the display position of each tomographic image is adjusted based on the changed optical path length of a reference beam of the measuring beam used for the image. The tomographic images are thus aligned in height and are presented in a manner that is easy for the operator to comprehend the positional relation between the photographed images.
Abstract:
In order to provide a mold and an imprint apparatus which permit adjustment of a depth of an imprint pattern after the imprint pattern is formed, the mold is constituted by a mold substrate including a first material and a surface layer, constituting a projection of the mold and including a second material, for forming a pattern on the photocurable resin material. The first material is more etchable than the second material. The first material and the second material have optical transmittances capable of curing the photocurable resin material with respect to at least a part of wavelength range of ultraviolet light.
Abstract:
A deformable mold includes a first surface at which an imprinting pattern is formed. The imprinting pattern (i) is used to imprint a pattern on a substrate and (ii) has a variable size, which varies based on an amount of deformation of the imprinting pattern. A second surface is located opposite from the first surface in a direction of thickness of the mold. A plurality of heat generating members that generate heat have a permeability to ultraviolet light and are disposed at one of (i) the second surface and (ii) between the first surface and the second surface, and the plurality of heat generating members directly contact the mold in order to control the amount of deformation of the imprinting pattern to vary the size of the imprinting pattern. A controller independently controls the plurality of heat generating members and the controller controls at least one of the heat generating members so as to effect anisotropic size correction of the mold in an in-plane direction of the mold.