Abstract:
A method for leaching a sulfidic metal concentrate in hydrometallurgical production of metal in a leaching process from which hot water vapor containing off-gas is conducted out and to which an acid solution warmed up to an elevated temperature is conducted. The acid solution is warmed up to an elevated temperature by bringing off-gas of the leaching step into direct contact with the acid solution.
Abstract:
The invention relates to a method of using a flotation machine that is used in metallurgical processes and to a flotation machine. The flotation machine foams hydrophobic particles from an aqueous slurry that contains these particles. The flotation machine includes a flotation cell (1), and a rotor (2) that is inside the flotation cell. The rotor (2) is rotated at a mixing power, which maintains the suspension in the slurry and mixing of air with the slurry to form the foam, and the mixing power is controlled by adjusting the rotation speed of the rotor. The amount of solid matter S accumulated on the bottom of the cell (1) is determined, and the rotation speed of the rotor (2) is adjusted on the basis of the determined amount of solid matter. The flotation machine includes a measuring device (5) for determining the amount of solid matter accumulated on the bottom of the cell. The adjusting device (4) is arranged to adjust the rotation speed of the motor (3), which rotates the rotor (2), on the basis of the measuring result of the measuring device (5) to remove the solid matter from the bottom of the cell.
Abstract:
A plant for refining raw materials containing organic constituents includes a reactor configured to receive raw materials; a furnace configured to receive solids and fuel from the reactor; a return conduit configured to recirculate hot solids generated in the furnace to the reactor; and a sealing device configured to separate an oxidizing atmosphere of the furnace from an atmosphere of the reactor. The sealing device includes: a downpipe disposed between the furnace and the reactor, the downpipe being configured to withdraw a stream of solids from the furnace; a rising pipe disposed near a bottom of the downpipe and branching off there from to a top, the rising pipe being configured to transport a fluidized stream of solids to the reactor; and a conveying gas supply disposed below the rising pipe, the conveying gas supply being configured to fluidize a stream of solids withdrawn from the furnace.
Abstract:
A TSL lance has an outer shell of three substantially concentric lance pipes, at least one further lance pipe concentrically within the shell, and an annular end wall at an outlet end of the lance which joins ends of outermost and innermost lance pipes of the shell at an outlet end of the lance and is spaced from an outlet end of the intermediate lance pipe of the shell. Coolant fluid is able to be circulated through the shell, by flow to and away from the outlet end. The spacing between the end wall and the outlet end of the intermediate pipe provides a constriction to the flow of coolant fluid to increase coolant fluid flow velocity therebetween. The further lance pipe defines a central bore and is spaced from the innermost lance pipe of the shell to define an annular passage, whereby materials passing along the bore and the passage mix adjacent to the outlet end of the lance. The end wall and an adjacent minor part of the length of the shell comprise a replaceable lance tip assembly.
Abstract:
A plant for refining raw materials containing organic constituents includes a reactor configured to receive raw materials; a furnace configured to receive solids and fuel from the reactor; a return conduit configured to recirculate hot solids generated in the furnace to the reactor; and a sealing device configured to separate an oxidizing atmosphere of the furnace from an atmosphere of the reactor. The sealing device includes: a downpipe disposed between the furnace and the reactor, the downpipe being configured to withdraw a stream of solids from the furnace; a rising pipe disposed near a bottom of the downpipe and branching off there from to a top, the rising pipe being configured to transport a fluidized stream of solids to the reactor; and a conveying gas supply disposed below the rising pipe, the conveying gas supply being configured to fluidize a stream of solids withdrawn from the furnace.
Abstract:
Disclosed is a system for electrolytic processing or recovery of a metal from an electrolyte solution. The system may comprise electrolysis cells and a rectifier. The cells may comprise interleaved anodes and cathodes. The anodes or the cathodes of a first cell may have an electrical connection to a terminal of the rectifier, respectively, via a first electrical path having a first resistance. The anodes or the cathodes of a second cell may have an electrical connection to a terminal of the rectifier, respectively, via a second electrical path having a second resistance. The second resistance is configured to be higher than the first resistance. The system may further comprise a channel for electrolyte from the first cell to the second cell, the electrolyte containing the metal in a dissolved ionic form, metal concentration in the first cell being higher than in the second cell.
Abstract:
The invention relates to a method and current measuring arrangement for measuring electric current flowing in an individual electrode in an electrolysis system. The electrolysis system comprises a plurality of interleaved electrodes (1, 2), cathodes (1) and anodes (2), arranged in an electrolysis cell (3) and immersed in electrolyte, said electrolysis system having a busbar (4) disposed on a separating cell wall (5) between each of the two adjacent cells to conduct electric current to the electrodes via a contact point (6) between the busbar and a hanger bar (7) of the electrode, and the current sensing arrangement comprises a magnetic field sensing means (8; 81, 82; 10) for measuring the magnetic field induced by said current. The magnetic field sensing means (8; 81, 82; 10) are arranged to sense the magnetic field substantially at the level of the contact point (6).
Abstract:
An apparatus for electroproduction or electrorefining of material including an electrode having a first conducting layer and a second conducting layer wherein the first conducting layer and the second conducting layer are separated by an electrically insulating layer.
Abstract:
The invention relates to a cooling element for a pyrometallurgical furnace such as for a flash smelting furnace or for a flash converting furnace or for a suspension smelting furnace. The invention relates also to a method for manufacturing a cooling element for a pyrometallurgical furnace such as for a flash smelting furnace or for a flash converting furnace or for a suspension smelting furnace. The cooling element (2) has a fire surface (2) to be in contact with an interior of the metallurgical furnace. The cooling element comprises a base element (4) containing copper and a coating (5) at least partly covering the base element (4). The coating (4) forms the fire surface (2) of the cooling element (1). The coating (5) is at least partly applied by a laser coating process such as laser deposition, and the coating (5) contains a Ni based alloy.
Abstract:
The invention provides several improvements in feedwells, one of which being a feedwell comprising a mixing zone for dissipating the kinetic energy of a fluid comprising pulp, a settling zone for promoting flocculation of the pulp and at least one inclined deflecting element for at least partially separating the mixing zone from the settling zone. Other improvements include a shelf at least partially defining an inclined path for removing material from the shelf into a feedwell chamber; at least two outlets arranged in a substantially concentric relationship with respect to each other; a portion of a second conduit varies in its cross-sectional size and/or shape so as to connect a feed inlet to a first conduit; and a partition for partially separating an outer mixing zone and an inner settling zone.