摘要:
A method for adjusting fuel injection timing in an internal combustion engine including a cylinder and configured to operate multiple fuel injections in the cylinder per combustion cycle includes monitoring in-cylinder pressure through a first combustion cycle, determining actual combustion phasing metrics based upon the in-cylinder pressure, monitoring a baseline fuel injection timing comprising a first injection timing and a second injection timing, providing expected combustion phasing metrics based upon the baseline fuel injection timing, comparing the actual combustion phasing metrics to the expected combustion phasing metrics, and adjusting the baseline fuel injection timing in a second combustion cycle based upon the comparing.
摘要:
There is provided a method and system for communicating a signal output from a wireless sensor to a processor on a mobile platform upon interruption of wireless communications with the processor. The wireless sensor is signally connected to a local processor operative to wirelessly communicate with the processor. A second sensor is signally connected to first and second inputs of the processor via an electrical cable. The local processor is operative to selectively interrupt signal transmission from the second sensor to the processor effective to identify the wireless sensor and effective to communicate the wireless sensor signal via the second input of the processor.
摘要:
There is provided a method and a control scheme to control an internal combustion engine operating in an auto-ignition mode by selectively activating a control scheme for controlling fuel injector operation based upon engine combustion parameters, e.g., IMEP or NMEP. The method comprises operating the engine in the auto-ignition combustion mode, and monitoring combustion in each of the cylinders. The fuel correction is selectively enabled only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.
摘要:
There is provided a method and a control scheme to control an internal combustion engine operating in an auto-ignition mode by selectively activating a control scheme for controlling fuel injector operation based upon engine combustion parameters, e.g., IMEP or NMEP. The method comprises operating the engine in the auto-ignition combustion mode, and monitoring combustion in each of the cylinders. The fuel correction is selectively enabled only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.
摘要:
A method for providing in-vehicle fuel-related information is disclosed. A geographic location of a vehicle is determined. A driving distance remaining for the vehicle is estimated based on a current fuel level and a fuel consumption rate of the vehicle. Fuel providers are located within a search area of the driving distance remaining for the vehicle, and one or more of the fuel providers are output. A travel cost for the vehicle may also be calculated.
摘要:
A method for computing indicated mean effective pressure (IMEP) in an internal combustion engine using sparse input data. The method uses an indirect integration approach, and requires significantly lower resolution crankshaft position and cylinder pressure input data than existing IMEP computation methods, while providing calculated IMEP output results which are very accurate in comparison to values computed by existing methods. By using sparse input data, the indirect integration method offers cost reduction opportunities for a manufacturer of vehicles, engines, and/or electronic control units, through the use of lower cost sensors and the consumption of less computing resources for data processing and storage.
摘要:
A method for computing indicated mean effective pressure (IMEP) in an internal combustion engine using sparse input data. The method uses a cubic spline integration approach, and requires significantly lower resolution crankshaft position and cylinder pressure input data than existing IMEP computation methods, while providing calculated IMEP output results which are very accurate in comparison to values computed by existing methods. By using sparse input data, the cubic spline integration method offers cost reduction opportunities for a manufacturer of vehicles, engines, and/or electronic control units, through the use of lower cost sensors and the consumption of less computing resources for data processing and storage.
摘要:
A method for adjusting fuel injection quantities in an internal combustion engine configured to operate multi-pulse fuel injections in a cylinder of the engine includes monitoring in-cylinder pressure, determining a burnt fuel mass for main combustion based upon the in-cylinder pressure, determining a burnt fuel mass for post combustion based upon the in-cylinder pressure, determining a main fuel quantity offset based upon the burnt fuel mass for main combustion, determining a post fuel quantity offset based upon the burnt fuel mass for post combustion, and controlling fuel injections into the cylinder based upon the main fuel quantity offset and the post fuel quantity offset.
摘要:
A system and method for determining mass fraction burned in an internal combustion engine includes a plurality of engine sensors and a control module determining a ratio of specific heat from a combination of one or more from the group of exhaust gas temperature, injected fuel quantity, air quantity inside a cylinder, mass air flow, air fuel ratio, manifold pressure and a residual gas amount determined from the plurality of engine sensors. The control module includes a mass fraction burned module determining a mass fraction burned in response to a cylinder volume, and the ratio of specific heat. The control module controls an engine parameter based on mass fraction burned.
摘要:
A method for correcting main fuel injection quantities in an internal combustion engine in a plurality of cylinders of the engine includes monitoring a desired fuel injection quantity for the plurality of cylinders, monitoring an in-cylinder pressure for each of the cylinders, determining a burnt fuel mass resulting from a main fuel injection for each of the cylinders based upon the in-cylinder pressures, determining a fuel injection quantity correction for each of the cylinders based upon the burnt fuel masses, and controlling fuel injections into the plurality of cylinders based upon the desired fuel injection quantity and the fuel injection quantity correction for each of the cylinders.