摘要:
The INTERIOR USER-COMFORT ENERGY EFFICIENCY MODELING AND CONTROL SYSTEMS AND APPARATUSES (“IUCEEMC”) transforms comfort maps and occupant comfort inputs via a profile library manager component, exploration manager component, comfort map manager component, regulation monitor component, control temperature sequence generator component, and comfort map modification component, into comfort map and control temperature sequence outputs. In some implementations, the IUCEEMC can divide a timespace of a temperature model into a plurality of sections, select a section from the plurality of sections, perform a first persistent change of the section from the plurality of sections, and, via a control temperature sequence generator, calculate a control temperature sequence using the temperature model. The IUCEEMC can develop and execute a temperature trajectory on an HVAC system, such as a home or industrial HVAC system.
摘要:
The APPARATUSES, METHODS AND SYSTEMS FOR COMFORT AND ENERGY EFFICIENCY CONFORMANCE IN AN HVAC SYSTEM transforms a comfort map into a plurality of sequential constant-temperature segments that are used in generating a control temperature sequence that preserves occupant comfort while improving energy efficiency.
摘要:
The INTERIOR COMFORT HVAC USER-FEEDBACK CONTROL SYSTEM AND APPARATUS transforms qualitative feedback received from a user/occupant into a “comfort map,” or modifications thereto, a comfort map being defined at least in part by one or more comfort event windows. The comfort map data is used to determine a temperature setpoint sequence that avoids regions of the map corresponding to known and/or predicted regions of user discomfort.
摘要:
A system for comfort based management of thermal systems, including residential and commercial buildings with active cooling and/or heating, is described. The system can operate without commissioning information, and with minimal occupant interactions, and can learn heat transfer and thermal comfort characteristics of the thermal systems so as to control the temperature thereof while minimizing energy consumption and maintaining comfort.
摘要:
A method of automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system. An expected input power function in the form of a hyperplane is calculated based on three temperature readings: an intake temperature from an intake area of the condenser unit, a return temperature from an intake area of an evaporator unit, and a supply temperature from a supply output area of the evaporator unit. The function produces an estimate of the expected input power consumed by the compressor unit, and this expected input power is compared with an actual input power measured from the compressor unit. If the expected input power deviates from the measured input power by more than a predetermined tolerance, an indication is stored and communicated that an anomalous condition, such as a refrigerant loss, condenser unit fouling, or a malfunctioning fan, exists in the vapor compression system.
摘要:
A resistance weld control employing a model-based run-to-run estimate of load impedance, giving the weld control system the ability to maintain and predict the expected impedance of a successfully completed resistance spot weld, and to detect when the load impedance observed by the resistance weld control is within a target neighborhood of that impedance predicted by the model-based run-to-run estimate of load impedance. A target weld current and a range of weld times may be specified, such that the actual weld time employed in making the resistance spot weld is responsive to the time required to complete the contact preparation phase. Further, a fixed weld time and a range of target weld currents may be specified to make a resistance spot weld, such that the actual target weld current employed is responsive to the time required to complete the contact preparation phase of the weld.
摘要:
An online monitor that can be permanently attached to a device to be monitored continuously monitors a set of analog signals and initiates data capture over a window of time when a user programmable set of conditions is satisfied. The online monitor includes a digital signal processing unit, a modular, interchangeable, analog signal conditioning base unit that can be tailored to the specific requirements of the process to be monitored and a modular, interchangeable, communication interface unit. The interface unit permits the digital signal processing unit to exchange data with external equipment such as network computers via a number of industry standard communication fieldbus protocols. The online monitor provides the capability to define the trigger condition under which data capture is initiated by comparing a user defined signal to a function of the instantaneous value of another signal or constant. Data captured is stored indefinitely in internally battery backed memory and the instant at which data capture is initiated is determined accurately via a time tagging function, so the data can be retrieved at a later time.
摘要:
A communication system between a programmable logic controller and a network of a plurality of remote input/output repeater modules uses a synchronous serial communications protocol. The programmable logic controller contains a transmitter module for generating a data packet containing the state of an output device connected to a remote input/output repeater module coupled to the network. A receiver module receives and decodes a returned modified data packet that indicates the state of input devices connected to the same or other remote input/output repeater modules also coupled to the network. The remote input/output repeater modules receive and decode the data packet to determine the state of the output devices that may be connected to it and modifies the data packet to indicate the state of its input device if there is one present. The modified data packet is sent to the next in-line remote input/output repeater module coupled to the network.
摘要:
A method of automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system. An expected input power function in the form of a hyperplane is calculated based on three temperature readings: an intake temperature from an intake area of the condenser unit, a return temperature from an intake area of an evaporator unit, and a supply temperature from a supply output area of the evaporator unit. The function produces an estimate of the expected input power consumed by the compressor unit, and this expected input power is compared with an actual input power measured from the compressor unit. If the expected input power deviates from the measured input power by more than a predetermined tolerance, an indication is stored and communicated that an anomalous condition, such as a refrigerant loss, condenser unit fouling, or a malfunctioning fan, exists in the vapor compression system.