Abstract:
A control adapter for fastening on a HVAC device includes a wireless communication interface for communicating control signals between a remote control device and the control adapter. A wireless near-field communication interface communicates control signals between the control adapter and the HVAC device. A control circuit converts the control signals received from the wireless communications interface into the control signals of the wireless near-field communication interface and converts the control signals received from the wireless near-field communication interface into control signals of the wireless communication interface.
Abstract:
A network for carrying out control, sensing and data communications, composed of a plurality of nodes. Each node may be connected to a payload, which includes sensors, actuators and DTE's. The network is formed using a plurality of independent communication links, each based on electrically-conducting communication media composed of at least two conductors and interconnecting two nodes, in a point-to-point configuration. During network operation, nodes can be dynamically configured as either data-generating nodes, wherein data is generated and transmitted into the network, or as receiver/repeater/router nodes, wherein received data is repeated from a receiver port to all output ports.
Abstract:
Apparatus for controlling an electrical device by remote control including a control device coupled to the electrical device by a wire connection for providing power to the electrical device, the control device having an actuator for adjusting the status of the electrical device and a radio frequency transmitter/receiver and antenna for adjusting the status of the electrical device in response to control information in a radio frequency signal. The transmitter/receiver receives the radio frequency signal via the antenna and transmits a status radio frequency signal with information regarding the status of the electrical device. A master control unit has at least one actuator and status indicator and a transmitter/receiver for transmitting a radio frequency signal having the control information therein to control the status of the electrical device and for receiving the status information from the control device. The status indicator indicates the status of the electrical device in response to the status information. A repeater receives the radio frequency signal from the master unit and transmits the control information to the control device and receives the status information from the control device and transmits it to the master unit.
Abstract:
An apparatus for retimer presence detection is described herein. The apparatus includes at least one retimer, wherein an algorithm is to enable the at least one retimer to announce its presence by asserting a bit of a presence message during link initialization. The at least one retimer can declare an index and is accessible via the index.
Abstract:
A network for carrying out control, sensing and data communications, comprising a plurality of nodes. Each node may be connected to a payload, which comprises sensors, actuators and DTE's. The network is formed using a plurality of independent communication links, each based on electrically-conducting communication media comprising at least two conductors and interconnecting two nodes, in a point-to-point configuration. During network operation, nodes can be dynamically configured as either data-generating nodes, wherein data is generated and transmitted into the network, or as receiver/repeater/router nodes, wherein received data is repeated from a receiver port to all output ports. During normal network operation, the network shifts from state to state. Each state is characterized by assigning a single node as the data-generating node, and configuring all other nodes in the network as repeaters and receivers. The network can be configured in linear or circular topology, or any mixture of both. The nodes and the payloads can each be powered by local power supply or via the network wiring. In the latter case, dedicated wires can be used, or the same conductors may be employed for both power distribution and communication. Network control can be performed external to the network, or by using the network itself as transport for control messages. Shifting from state to state can be done by selecting sequential nodes to be the data-generating node, or by selecting arbitrary nodes to be the data-generating node.
Abstract:
The present invention relates to a wireless home automation system having a controller for controlling a broad variety of functions via two ways communication with a plurality of devices. The controllers and devices of the system comprises means for generating a signal comprising a destination identifier, instructions related to the input/output of the destination or source device, and a repeater identifier. The devices according to the invention are adapted to act as input/output devices and signal repeating devices. The processors of each device comprises means for, upon reception of a signal, processing said information if the destination identifier corresponds to the device identifier of the device, and means for, upon reception of a signal, transmitting a second signal holding at least said destination identifier and said instruction if the repeater identifier corresponds to the device identifier of the device.
Abstract:
A network for carrying out control, sensing and data communications, composed of a plurality of nodes. Each node may be connected to a payload, which includes sensors, actuators and DTE's. The network is formed using a plurality of independent communication links, each based on electrically-conducting communication media composed of at least two conductors and interconnecting two nodes, in a point-to-point configuration. During network operation, nodes can be dynamically configured as either data-generating nodes, wherein data is generated and transmitted into the network, or as receiver/repeater/router nodes, wherein received data is repeated from a receiver port to all output ports.
Abstract:
A network for carrying out control, sensing and data communications, composed of a plurality of nodes. Each node may be connected to a payload, which includes sensors, actuators and DTE's. The network is formed using a plurality of independent communication links, each based on electrically-conducting communication media composed of at least two conductors and interconnecting two nodes, in a point-to-point configuration. During network operation, nodes can be dynamically configured as either data-generating nodes, wherein data is generated and transmitted into the network, or as receiver/repeater/router nodes, wherein received data is repeated from a receiver port to all output ports.
Abstract:
A network for carrying out control, sensing and data communications, comprising a plurality of nodes. Each node may be connected to a payload, which comprises sensors, actuators and DTE's. The network is formed using a plurality of independent communication links, each based on electrically-conducting communication media comprising at least two conductors and interconnecting two nodes, in a point-to-point configuration. During network operation, nodes can be dynamically configured as either data-generating nodes, wherein data is generated and transmitted into the network, or as receiver/repeater/router nodes, wherein received data is repeated from a receiver port to all output ports. During normal network operation, the network shifts from state to state. Each state is characterized by assigning a single node as the data-generating node, and configuring all other nodes in the network as repeaters and receivers. The network can be configured in linear or circular topology, or any mixture of both. The nodes and the payloads can each be powered by local power supply or via the network wiring. In the latter case, dedicated wires can be used, or the same conductors may be employed for both power distribution and communication. Network control can be performed external to the network, or by using the network itself as transport for control messages. Shifting from state to state can be done by selecting sequential nodes to be the data-generating node, or by selecting arbitrary nodes to be the data-generating node.
Abstract:
The present invention relates to a wireless home automation system having a controller for controlling a broad variety of functions via two ways communication with a plurality of devices. More specifically, the invention relates to systems having two or more controllers for controlling devices, wherein information related to the system can be shared between controllers, e.g. by updating a second controller with the newly learned information of a first controller, or by replicating a controller by making a second controller a complete copy of a first controller. The information can be shared by, in a first controller, generating and transmitting signals comprising device identifiers of devices controlled by the first controller, receiving said signals at a second controller, and storing said device identifiers in an organized data structure in a memory of the second controller. This function proves advantageous when new controllers are introduced in the system or if a controller is lost, worn out, or destroyed.