摘要:
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
摘要:
Disclosed herein is an interferometric-based materials analysis system (10) that employs a novel combination of laser beam shaping and pointing techniques, the use of a low cost, rugged, and compact diode laser (22) as a detection laser, and the use of signal processing techniques that compensate for inherent instabilities and short-term drift in the diode laser. A matched filter processing technique is disclosed for processing interferometrically-obtained data points from a target being analyzed. The matched filter technique is shown to be especially useful for detecting and analyzing Lamb modes within thin targets, such as a silicon wafer undergoing a rapid thermal processing cycle. Also disclosed is a method and apparatus for interferometrically monitoring a target to determine, in accordance with predetermined criteria, an occurrence of a period of time that is optimum for obtaining a data point. In response to detecting such a period an impulse source, such as an impulse laser (14), is triggered to launch an elastic wave within the target so that a data point can be obtained. A plurality of data points so obtained are subsequently processed, such as by the matched filter technique, to determine a property of interest of the target. The property of interest may be, by example, the temperature of the target or the metallurgical status of the target.
摘要:
A laser ultrasonics technique is used to characterize a composite dispersive response signal from a sample under analysis, such as a semiconductor wafer. Rather than measuring individual acoustic wave velocities at specific frequencies, an entire dispersive response signal is analyzed. In a presently preferred embodiment of this invention the entire dispersive response signal is analyzed using a wavelet-based technique, such as a discrete wavelet transform analysis technique. The discrete wavelet transform analysis technique is shown to provide an accurate, non-contact measurement of the temperature of the wafer.
摘要:
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
摘要:
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
摘要:
In an apparatus and method for remote ultrasonic determination of thin material properties, a match filter calibration technique is employed. For a plurality of known material property values and known material thicknesses, an elastic stress wave is generated in the material at a source location. The intensity of a signal generated by the elastic stress wave is sensed at a sense location positioned a known distance from the source location. A feature is selected from among the sensed signals which demonstrates minimal thickness dependents from a plurality of known material thicknesses. The selected feature is applied to the sensed signals to determine propagation time of the signals over the known distance. A calibration curve is then generated to characterize the relationship between signal propagation time and material property value for each material thickness. The present technique is especially amenable to determination of thin material properties, for example temperature, in a manner which is independent of material thickness. In an embodiment adapted for determination of temperature, precision on the order of ±1° C. is achievable over a range of material thicknesses.
摘要:
In an apparatus and method for remote ultrasonic determination of thin material properties using signal correlation, a method and apparatus are provided by which an arbitrarily-oriented anisotropic thin material may be interrogated for characterizing an unknown material property value thereof. The unknown material property may comprise for example temperature, pressure, elastic constants, density, hardness, composition, crystal orientation, grain size, and residual stress, or any material property that is variable with respect to known physical parameters of the material, for example known material elastic constants and/or density. In a first embodiment, theoretical signals are generated, for example a theoretical signal matrix, to characterize a material property value of a thin anisotropic material. A model of the thin material is generated comprising the behavior of the known material physical properties as functions of the unknown material property value to be characterized. For a plurality of known material thicknesses and known material property values, a transduction mechanism is simulated at a source location for generating a simulated elastic stress wave operating on the model at a plurality of source locations. The simulated intensities of signals generated by the simulated elastic stress waves are computed at a sense location to provide a representative composite signal. Theoretical signals are determined from the composite signal at each thickness and at each material property value. In a second aspect, the present invention is directed to a method for empirical characterization of a transduction event in a thin material using iterative temporal decomposition of an initial estimate of the transduction event converging on a measured signal.
摘要:
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
摘要:
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
摘要:
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.