Abstract:
A shelf-stable electrically assisted transdermal drug delivery system for highly effective electrotransport of an anesthetic and a vasoconstrictor producing clinically acceptable dermal anesthesia and sensation is provided. In certain embodiments the anesthetic includes lidocaine and the vasoconstrictor includes epinephrine. Medicament delivery is affected to provide dermal anesthesia with little or no sensation during delivery, as measured by a variety of indicator tests. Methods of producing dermal anesthesia in patients are also provided.
Abstract:
Provided are various embodiments of integrated electrode devices, assemblies and systems structured for use in association with electrically assisted delivery devices configured for delivery of a composition to a membrane. The integrated electrode devices, assemblies and systems include one or more of a variety of structural, physical, mechanical, electrical and electromechanical enhancements.
Abstract:
Formed constituents in an aqueous based fluid biologic material sample are separated from the aqueous constituent of the sample, and are concentrated in an examining instrument's focal plane where they can be examined under magnification. Examples of fluids that can be analyzed in this fashion include urine; cerebrospinal fluid; pleural fluid; ascites; fluids aspirated from cysts such as thyroid and breast cysts; cytologic specimens which have been placed in an aqueous fluid; platelet-rich plasma; and the like. The sample is placed in a chamber having a layer of a hydrophilic hydrogel covering a surface of the chamber. An opposite surface of the chamber is transparent, and may be formed by a microscope slide cover slip, or the like. The volume of hydrogel in the chamber is sufficient so that, when the hydrogel absorbs essentially all of the aqueous fraction of the sample, the hydrogel will expand and fill the chamber. The capture surface of the expanded hydrogel is preferably planar, and any formed constituents in the sample will be captured on the capture surface of the hydrogel layer, and will not be absorbed into the hydrogel. Formed constituents, such as: cells; bacteria; crystals; protozoa; ova; parasites; and the like, can be differentially highlighted by use of labeled antibodies, selective stains, or the like, so as to enable optical examination and differentiation of various formed constituents which may be in the sample. Formed constituents may be harvested from the capture surface of the expanded hydrogel layer for more detailed examination and analysis. The capture surface of the hydrogel may be provided with a plurality of beads for use in locating the capture surface with an optical scanning instrument, and for re-establishing previously scanned fields of view.
Abstract:
A shelf-stable electrically assisted transdermal drug delivery system for highly effective electrotransport of an anesthetic and a vasoconstrictor producing clinically acceptable dermal anesthesia and sensation is provided. In certain embodiments the anesthetic includes lidocaine and the vasoconstrictor includes epinephrine. Medicament delivery is affected to provide dermal anesthesia with little or no sensation during delivery, as measured by a variety of indicator tests. Methods of producing dermal anesthesia in patients are also provided.
Abstract:
A reservoir electrode assembly of the present invention for an iontophoretic drug delivery device includes an electrode and a hydrophilic reservoir situated in electrically conductive relation to the electrode. The hydrophilic reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a first surface and a second surface that is adhesively adherent to the electrode. The first surface of the polymeric material is releasably adhesively adherent when applied to an area of a patient's skin. The polymeric material has a cohesive strength forms an adhesive bond with a bond strength between the second surface of the polymeric material to the electrode that is greater than the cohesive strength of the polymeric material. Additionally, an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of the polymeric material so that upon removal of the reservoir assembly of the invention from the applied area of the patient, substantially no polymeric material remains on the applied area and the hydrophilic reservoir remains substantially intact and adhesively adherent to the electrode.
Abstract:
A reservoir electrode assembly of the present invention for an iontophoretic drug delivery device includes an electrode and a hydrophilic reservoir situated in electrically conductive relation to the electrode. The hydrophilic reservoir is formed from a bibulous hydrophilic cross-linked polymeric material having a first surface and a second surface that is adhesively adherent to the electrode. The first surface of the polymeric material is releasably adhesively adherent when applied to an area of a patient's skin. The polymeric material has a cohesive strength forms an adhesive bond with a bond strength between the second surface of the polymeric material to the electrode that is greater than the cohesive strength of the polymeric material. Additionally, an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of the polymeric material so that upon removal of the reservoir assembly of the invention from the applied area of the patient, substantially no polymeric material remains on the applied area and the hydrophilic reservoir remains substantially intact and adhesively adherent to the electrode.
Abstract:
The use of an iontophoresis electrode assembly for delivery of a drug formulation is described. The drug formulation includes an anaesthetic and a vasoconstrictor. It is administered to a patient prior to a procedure to produce clinically acceptable depth and duration of dermal anaesthesia at the portion of skin to subject to a painful procedure or to reduce or eliminate pain. The procedure is one selected from the group consisting of venipuncture, IV cannulation, needle aspirations, body piercings, blood donations, electrolysis, tattoo removal, tattoo application, injections, dermabrasion, skin peeling, high velocity particle ablation, pace maker implantation, pace maker replacement, epidural puncture, lumbar puncture, regional nerve blocks, skin harvesting, small skin incisions, skin biopsies, circumcisions or excisions. The iontophoresis electrode assembly may also be used to reduce or temporarily eliminate neuropathic pain.
Abstract:
A process for fabricating a water-swellable porous plastic plug is provided, the process including the steps of: providing a porous substrate having a plurality of passageways therethrough, disposing into the passageways a hydrophilic polymer, irradiating the substrate to induce cross-linking of the hydrophilic polymer, such that the polymer forms a hydrogel coating on the walls of the passageways.
Abstract:
An electrically assisted transdermal drug delivery system for highly effective electrotransport of an anesthetic and a vasoconstrictor producing clinically acceptable depth and duration of dermal anesthesia at a treatment site. In certain embodiments, the anesthetic comprises lidocaine and the vasoconstrictor comprises epinephrine.
Abstract:
A reservoir electrode assembly of the present invention for an iontophoretic drug delivery device includes an electrode and a hydrophilic reservoir situated in electrically conductive relation to the electrode. The hydrophilic reservoir is formed from a bibulous hydrophilic crosslinked polymeric material having a first surface and a second surface that is adhesively adherent to the electrode. The first surface of the polymeric material is releasably adhesively adherent when applied to an area of a patient's skin. The polymeric material has a cohesive strength forms an adhesive bond with a bond strength between the second surface of the polymeric material to the electrode that is greater than the cohesive strength of the polymeric material. Additionally, an adhesive bond strength of the first surface of the polymeric material to the applied area of the patient is less than the cohesive strength of the polymeric material so that upon removal of the reservoir assembly of the invention from the applied area of the patient, substantially no polymeric material remains on the applied area and the hydrophilic reservoir remains substantially intact and adhesively adherent to the electrode.