Abstract:
Disclosed are methods and systems for supporting positioning operations in a cellular communication network including locating a mobile device in response to an emergency event. In one particular implementation, a first position fix may be provided quickly by a mobile device and may be followed by a second, more accurate, position fix at a later time. In particular implementations, the first and second position fixes may be provided using the 3GPP Long Term Evolution (LTE) Positioning Protocol (LPP) as part of a single LPP transaction and may further be provided using a user plane or control plane location solution.
Abstract:
Example methods, apparatuses, and/or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate and/or support one or more operations and/or techniques for enhanced resource sharing for positioning reference signals (PRS) measurements, such as for use in or with mobile communication devices, for example.
Abstract:
Disclosed are methods and systems for supporting positioning operations in a cellular communication network including locating a mobile device in response to an emergency event. In one particular implementation, a first position fix may be provided quickly by a mobile device and may be followed by a second, more accurate, position fix at a later time. In particular implementations, the first and second position fixes may be provided using the 3GPP Long Term Evolution (LTE) Positioning Protocol (LPP) as part of a single LPP transaction and may further be provided using a user plane or control plane location solution.
Abstract:
In a communications system, a method of transforming a set of message signals representing a message comprising the steps of first encoding one of the set of message signals in accordance with a first keyed transformation, a second encoding of the one of the set of message signals in accordance with at least one additional keyed transformation, a third encoding of the one of the set of message signals in accordance with a self inverting transformation in which at least one of the set of message signals is altered, a fourth encoding of the one of the set of message signals in accordance with at least one additional inverse keyed transformation wherein each of the at least one additional inverse keyed transformation is a corresponding inverse of at least one additional keyed transformation, and fifth encoding the one of the set of message signals in accordance with first inverse keyed transformation wherein the first inverse keyed transformation is the inverse of the first keyed transformation.
Abstract:
A receive filter receives signals from a communication channel. The received signals correspond to original Walsh covered chip sequences transmitted by a transmit filter through the communication channel to the receive filter. The received signals are processed by an equalizer to generate a soft estimate of chip sequences corresponding to the original Walsh covered chip sequences. An N chip Walsh decover is then utilized to generate a soft estimate of code symbols corresponding to the soft estimate of the chip sequences. A number of symbol slicers are then used in parallel to produce a hard estimate of the code symbols corresponding to the soft estimate of code symbols generated by the N chip Walsh decover. Thereafter an N chip Walsh cover is used as part of a scheme to generate a hard estimate of chip sequences corresponding to the hard estimate of the code symbols generated by the symbol slicers. The hard estimate of the chip sequences generated with the aid of the N chip Walsh cover, and the soft estimate of the chip sequences generated by the equalizer, are used to generate a tracking mode error signal to adapt the response of the equalizer to the received signals.
Abstract:
A method and apparatus for minimizing the amount of time that a mobile station is to be out of communication with an nulloriginationnull base station while searching for a suitable system to which to perform a mobile station assisted hard handoff. After being directed to search for pilot signals in an alternate frequency band, the mobile station tunes to that alternate frequency and samples the incoming data, storing those samples in memory. When a sufficient number of samples have been stored, the mobile station retunes to the origination frequency. The forward link data is again received by the mobile station, and reverse link data can be successfully transmitted to the origination base station. After retuning to the origination frequency, a searcher in the mobile station will subsequently be employed to search for pilot signal offsets utilizing the stored data collected from the alternate frequency.
Abstract:
A method and apparatus for reducing transmission delay in a wireless communication system that carries packetized voice and data information. Interruptions in the traffic channels cause loss of synchronization between a header compressor and a header decompressor. Rather than transmitting resynchronization information on the traffic channel, the information dropped by an interruption is re-transmitted on a non-traffic channel in parallel with the traffic channel. At the remote station, information from the traffic channel and the non-traffic channel is reassembled before input into the decompressor. Alternatively, the non-traffic channel can be used to carry overflow information so that a higher average data rate can be achieved than the average data rate of the traffic channel alone.
Abstract:
A wireless telephone (302) digitizes the voice of the user in response to the depression of a push-to-talk button (110), either physical or virtual. It sends the digitized voice, in data mode, to a base station (308). The base station places the data, through the Internet, or an Intranet or Extranet, on a server (312). Other wireless phones (304)-(306) recover the data from the server through the same (308) or different (310) base station, through the Internet, Intranet, or Extranet, and convert the data back to digitized voice. The base stations transmit the digitized voice to other wireless telephones (306), which convert them back to voice in response to the recognition of voice frames on the data channel by the CODEC manager software. Networked computers (314) may be configured to emulate a combined base station and wireless telephone. The server can dynamically designate any wireless telephone (or landline emulation) as the broadcaster, and can dynamically configure any set of telephones/emulations as the receivers of the broadcast.
Abstract:
The present invention is a novel and improved method and apparatus for performing position location in wireless communications system. One embodiment of the invention comprises a method for performing position location on a subscriber unit in a terrestrial wireless telephone system using a set of satellites each transmitting a signal, the terrestrial wireless telephone system having base stations, including the steps of transmitting an aiding message from the base station to the subscriber unit, said aiding message containing information regarding a data boundary for each signal from the set of satellites, applying correlation codes to each signal yielding corresponding correlation data and accumulating said correlation data over an first interval preceding a corresponding data boundary yielding a first accumulation result, and a second interval following said corresponding data boundary yielding a second accumulation result.
Abstract:
A method is disclosed, including obtaining an infrared representation based on a detected infrared signal and obtaining a combined representation based on a detected combined ultrasonic and infrared signal. An output representation is generated from the infrared representation and the combined representation. The output representation can be generated from a comparison between the combined representation and the infrared signal representation.