Dialog coherence using semantic features
    1.
    发明授权
    Dialog coherence using semantic features 有权
    使用语义特征的对话一致性

    公开(公告)号:US09348816B2

    公开(公告)日:2016-05-24

    申请号:US12579251

    申请日:2009-10-14

    CPC classification number: G06F17/279

    Abstract: The present invention provides a method for identifying a turn, such as a sentence or phrase, for addition to a platform dialog comprising a plurality of turns. Lexical features of each of a set of candidate turns relative to one or more turns in the platform dialog are determined. Semantic features associated with each candidate turn and associated with the platform dialog are determined to identify one or more topics associated with each candidate turn and with the platform dialog. Lexical features of each candidate turn are compared to lexical features of the platform dialog and semantic features associated with each candidate turn are compared to semantic features of the platform dialog to rank the candidate turns based on similarity of lexical features and semantic features of each candidate turn to lexical features and semantic features of the platform dialog.

    Abstract translation: 本发明提供了一种用于识别转弯的方法,例如句子或短语,用于添加到包括多个匝数的平台对话。 确定相对于平台对话中的一个或多个转弯的一组候选转弯中每一个的词汇特征。 确定与每个候选转弯相关联并与平台对话相关联的语义特征以识别与每个候选转弯相关联的一个或多个主题以及与平台对话。 将每个候选回合的词汇特征与平台对话的词汇特征进行比较,并将与每个候选轮次相关联的语义特征与平台对话的语义特征进行比较,以基于词汇特征和每个候选转弯的语义特征的相似性对候选轮次进行排名 到平台对话的词汇特征和语义特征。

    Evolutionary clustering algorithm
    2.
    发明授权
    Evolutionary clustering algorithm 有权
    进化聚类算法

    公开(公告)号:US08712935B2

    公开(公告)日:2014-04-29

    申请号:US13143420

    申请日:2009-12-23

    CPC classification number: G06F19/24 G06F19/18 G06F19/20

    Abstract: The invention relates to selecting a set of candidate genes from a pool of genes. The method comprising receiving a set of gene data; arranging the set of gene data into a set of clusters with similar profiles by use of a clustering algorithm; and inputting the set of clusters into a genetic algorithm to select a set of candidate genes from the set of clusters. The method thus relates to hybrid between selection by clustering computation and selection by evolutionary computation. This hybrid is also referred to as an evolutionary clustering algorithm (ECA).

    Abstract translation: 本发明涉及从一组基因中选择一组候选基因。 该方法包括接收一组基因数据; 通过使用聚类算法将该组基因数据排列成具有相似特征的集合; 以及将所述集合集合输入到遗传算法中以从所述集合集合中选择一组候选基因。 因此,该方法涉及通过聚类计算和通过进化计算进行选择的选择之间的混合。 该混合也称为进化聚类算法(ECA)。

    Free-speech command classification for car navigation system
    4.
    发明授权
    Free-speech command classification for car navigation system 有权
    汽车导航系统的自由语音命令分类

    公开(公告)号:US08359204B2

    公开(公告)日:2013-01-22

    申请号:US12259196

    申请日:2008-10-27

    Applicant: Rakesh Gupta

    Inventor: Rakesh Gupta

    Abstract: The present invention provides a system and method associating the freeform speech commands with one or more predefined commands from a set of predefined commands. The set of predefined commands are stored and alternate forms associated with each predefined command are retrieved from an external data source. The external data source receives the alternate forms associated with each predefined command from multiple sources so the alternate forms represent paraphrases of the predefined command. A representation including words from the predefined command and the alternate forms of the predefined command, such as a vector representation, is generated for each predefined command. A similarity value between received speech data and each representation of a predefined command is computed and the speech data is classified as the predefined command whose representation has the highest similarity value to the speech data.

    Abstract translation: 本发明提供一种将自由形式语音命令与来自一组预定义命令的一个或多个预定义命令相关联的系统和方法。 存储一组预定义的命令,并从外部数据源检索与每个预定义命令相关联的替代形式。 外部数据源从多个源接收与每个预定义命令相关联的替代形式,因此替代形式表示预定义命令的释义。 为每个预定义的命令生成包括来自预定义命令的字和表示预定义命令的替代形式的表示,例如向量表示。 计算接收到的语音数据与预定义命令的每个表示之间的相似度值,并将语音数据分类为表示与语音数据具有最高相似度值的预定义命令。

    Text categorization with knowledge transfer from heterogeneous datasets
    5.
    发明授权
    Text categorization with knowledge transfer from heterogeneous datasets 有权
    文本分类与异构数据集的知识转移

    公开(公告)号:US08103671B2

    公开(公告)日:2012-01-24

    申请号:US12249809

    申请日:2008-10-10

    CPC classification number: G06F17/30705

    Abstract: The present invention provides a method for incorporating features from heterogeneous auxiliary datasets into input text data for use in classification. Heterogeneous auxiliary datasets, such as labeled datasets and unlabeled datasets, are accessed after receiving input text data. Features are extracted from each of the heterogeneous auxiliary datasets. The features are combined with the input text data to generate a set of features which may potentially be used to classify the input text data. Classification features are then extracted from the set of features and used to classify the input text data. In one embodiment, the classification features are extracted by calculating a mutual information value associated with each feature in the set of features and identifying features having a mutual information value exceeding a threshold value.

    Abstract translation: 本发明提供了一种将来自异构辅助数据集的特征结合到用于分类的输入文本数据中的方法。 在接收到输入的文本数据之后,访问异构辅助数据集,如标记的数据集和未标记的数据集。 从各种异构辅助数据集中提取特征。 这些特征与输入文本数据组合以产生可能用于对输入文本数据进行分类的一组特征。 然后从特征集中提取分类特征,并用于对输入文本数据进行分类。 在一个实施例中,通过计算与特征集合中的每个特征相关联的互信息值并且识别具有超过阈值的互信息值的特征来提取分类特征。

    EVOLUTIONARY CLUSTERING ALGORITHM
    6.
    发明申请
    EVOLUTIONARY CLUSTERING ALGORITHM 有权
    演化聚类算法

    公开(公告)号:US20120016826A1

    公开(公告)日:2012-01-19

    申请号:US13143420

    申请日:2009-12-23

    CPC classification number: G06F19/24 G06F19/18 G06F19/20

    Abstract: The invention relates to selecting a set of candidate genes from a pool of genes. The method comprising receiving a set of gene data; arranging the set of gene data into a set of clusters with similar profiles by use of a clustering algorithm; and inputting the set of clusters into a genetic algorithm to select a set of candidate genes from the set of clusters. The method thus relates to hybrid between selection by clustering computation and selection by evolutionary computation. This hybrid is also referred to as an evolutionary clustering algorithm (ECA).

    Abstract translation: 本发明涉及从一组基因中选择一组候选基因。 该方法包括接收一组基因数据; 通过使用聚类算法将该组基因数据排列成具有相似特征的集合; 以及将所述集合集合输入到遗传算法中以从所述集合集合中选择一组候选基因。 因此,该方法涉及通过聚类计算和通过进化计算进行选择的选择之间的混合。 该混合也称为进化聚类算法(ECA)。

    Commonsense reasoning about task instructions
    7.
    发明授权
    Commonsense reasoning about task instructions 有权
    关于任务说明的常识推理

    公开(公告)号:US08019713B2

    公开(公告)日:2011-09-13

    申请号:US11378063

    申请日:2006-03-16

    CPC classification number: G06N5/00

    Abstract: A system and method enable an autonomous machine such as an indoor humanoid robot to systematically process user commands and respond to situations. The method captures distributed knowledge from human volunteers, referred to as “commonsense knowledge.” The commonsense knowledge comprises classes such as steps for tasks, responses to situations, and locations and uses of objects. Filtering refines the commonsense knowledge into useful class rules. A second level of rules referred to as meta-rules performs reasoning by responding to user commands or observed situations, orchestrating the class rules and generating a sequence of task steps. A task sequencer processes the generated task steps and drives the mechanical systems of the autonomous machine.

    Abstract translation: 系统和方法使得诸如室内人形机器人的自主机器能够系统地处理用户命令并对情况做出响应。 该方法捕获来自人类志愿者的分布式知识,被称为“常识知识”。常识知识包括诸如任务步骤,对情境的反应以及对象的位置和用途等类。 过滤将常识知识细化为有用的类规则。 称为元规则的第二级规则通过响应用户命令或观察到的情况来执行推理,协调类规则并生成一系列任务步骤。 任务排序器处理生成的任务步骤并驱动自主机器的机械系统。

    BLENDING SINGLE-MASTER AND MULTI-MASTER DATA SYNCHRONIZATION TECHNIQUES
    10.
    发明申请
    BLENDING SINGLE-MASTER AND MULTI-MASTER DATA SYNCHRONIZATION TECHNIQUES 有权
    混合单主和多主数据同步技术

    公开(公告)号:US20090287762A1

    公开(公告)日:2009-11-19

    申请号:US12119504

    申请日:2008-05-13

    Abstract: Architecture that maintains the user experience as close as possible to the user experience when dealing with the usual/regular forms and data provided in an office application when dealing with hybrid forms and hybrid data. Synchronization of the hybrid data to single-master and multi-masters systems is accomplished when the associated hybrid client goes offline, changes are made to the hybrid data, and then the client comes back online. For example, where the single-master system is a line-of-business (LOB) server system and the multi-master system is an officer server that employs collaboration capability, the architecture allows office users to access, manipulate, and share LOB entity information using collaborative means, while at the same time, ensuring data and business process consistency for the LOB entity in the LOB system.

    Abstract translation: 在处理混合形式和混合数据时处理办公应用程序中提供的常规/常规表单和数据时,维护用户体验尽可能接近用户体验的体系结构。 将混合数据同步到单主站和多主站系统时,当相关联的混合客户端脱机时进行,对混合数据进行更改,然后客户端重新联机。 例如,单主系统是业务线(LOB)服务器系统,多主系统是采用协作能力的高级服务器,架构允许办公用户访问,操纵和共享LOB实体 信息使用协同手段,同时确保LOB系统中的LOB实体的数据和业务流程一致性。

Patent Agency Ranking