摘要:
Methods of fabricating an integrated circuit with a fin-based fuse, and the resulting integrated circuit with a fin-based fuse are provided. In the method, a fin is created from a layer of semiconductor material and has a first end and a second end. The method provides for forming a conductive path on the fin from its first end to its second end. The conductive path is electrically connected to a programming device that is capable of selectively directing a programming current through the conductive path to cause a structural change in the conductive path to increase resistance across the conductive path.
摘要:
Methods for fabricating a heterojunction bipolar transistor having a raised extrinsic base is provided in which the base resistance is reduced by forming a silicide atop the raised extrinsic base that extends to the emitter region in a self-aligned manner. The silicide formation is incorporated into a BiCMOS process flow after the raised extrinsic base has been formed. The present invention also provides a heterojunction bipolar transistor having a raised extrinsic base and a silicide located atop the raised extrinsic base. The silicide atop the raised extrinsic base extends to the emitter in a self-aligned manner. The emitter is separated from the silicide by a spacer.
摘要:
The present invention provides a device design and method for forming the same that results in Fin Field Effect Transistors having different gains without negatively impacting device density. The present invention forms relatively low gain FinFET transistors in a low carrier mobility plane and relatively high gain FinFET transistors in a high carrier mobility plane. Thus formed, the FinFETs formed in the high mobility plane have a relatively higher gain than the FinFETs formed in the low mobility plane. The embodiments are of particular application to the design and fabrication of a Static Random Access Memory (SRAM) cell. In this application, the bodies of the n-type FinFETs used as transfer devices are formed along the {110} plane. The bodies of the n-type FinFETs and p-type FinFETs used as the storage latch are formed along the {100}. Thus formed, the transfer devices will have a gain approximately half that of the n-type storage latch devices, facilitating proper SRAM operation.
摘要:
A selectively silicided semiconductor structure and a method for fabricating same is disclosed herein. The semiconductor structure has silicide present on the polysilicon line between the N+ diffusion or N+ active area and the P+ diffusion or active area at the N+/P+ junction of the polysilicon line, and silicide is not present on the N+ active area and the P+ active area. The presence of this selective silicidation creates a beneficial low-resistance connection between the N+ region of the polysilicon line and the P+ region of the polysilicon line. The absence of silicidation on the N+ and P+ active areas, specifically on the PFET and NFET structures, prevents current leakage associated with the silicidation of devices.
摘要:
Capacitor structures that have increased capacitance without compromising cell area are provided as well as methods for fabricating the same. A first capacitor structure includes insulating material present in holes that are formed in a semiconductor substrate, where the insulating material is thicker on the bottom wall of each capacitor hole as compared to the sidewalls of each hole. In another capacitor structure, deep capacitor holes are provided that have an isolation implant region present beneath each hole.
摘要:
A method and structure for a test structure that has an array of cells connected together by conductive lines. The conductive lines connect the cells together as if they were a single cell. The conductive lines can include common word line; a common bit line; a common bit line complement line, a common N-well voltage line, a common interior ground line, a common interior voltage line, and/or a common ground line.
摘要:
A buried butted contact and method for its fabrication are provided which includes a substrate having dopants of a first conductivity type and having shallow trench isolation. Dopants of a second conductivity type are located in the bottom of an opening in said substrate. Ohmic contact is provided between the dopants in the substrate and the low diffusivity dopants that is located on a side wall of the opening. The contact is a metal silicide, metal and/or metal alloy.
摘要:
The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10.sup.17 atoms/cm.sup.3. The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700.degree. C., and more preferably between about 600.degree.-700.degree. C. Optionally, the wafer is annealed following the step of disposing the refractory metal and prior to the step of depositing the precursory metal layer. Preferably, this annealing step is performed at a wafer temperature of at least about 900.degree. C.
摘要:
A static random access memory cell is provided that includes first and second inverters formed on a substrate each having a pull-up and pull-down transistor configured to form a cell node. Each of the pull-down transistors of the first and second inverters resides over first regions below the buried oxide layer and having a first doping level and applied bias providing a first voltage threshold for the pull-down transistors. A pair of passgate transistors is coupled the cell nodes of the first and second inverters, and each is formed over second regions below the buried oxide layer and having a second doping level and applied bias providing a second voltage threshold for the passgate transistors. The first voltage threshold differs from the second voltage threshold providing electrical voltage threshold control between the pull-down transistors and the passgate transistors.
摘要:
An integrated circuit device includes at least one test device and a stress generator coupled to the test device and operable to cycle the at least one test device to generate an AC stress. A method for testing an integrated circuit device including at least one test device and a stress generator coupled to the test device includes enabling the stress generator to cycle the at least one test device to generate an AC stress and measuring at least one parameter of the test device to determine an effect of the AC stress.