摘要:
This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.
摘要:
This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.
摘要:
A method of manufacturing an LED lamp includes dispersing color correction particles throughout a suspension media to a viscosity of substantially 2000 cP. In the case of correcting blue GaN LEDs to white light, the particles to be blended are phosphorus having a diameter of less than 20 microns. An LED die is mounted onto a stage and a nano-liter pipette is arranged such that an interface separation of approximately 1 millimeter is achieved between the tip of the pipette and the surface of the LED die. Once the relatively viscous suspension media covers the LED die, ultraviolet light is directed towards the suspension media to cure it. Heat is then applied to further cure the suspension media until solid as observed under a microscope.
摘要:
This invention describes the preparation and use of metal oxide catalysts supported on titanium dioxide, hydrophobic or polymeric substrates for the removal of NO.sub.x and SO.sub.x from gas streams such as flue gases and combustion exhaust gases.
摘要:
A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.