Abstract:
A Nickel (Ni) catalyst for facilitating a hydrocarbon reforming process, and an improved process based on the catalyst. The catalyst comprising discrete Ni crystallites having a size in the range of between 150 and 250 Å and a distribution on said support element of no more than 0.14 square meters of exposed nickel/square meter of support.
Abstract:
The invention concerns a process for regenerating a catalyst for the production of aromatic compounds, in particular for reforming, comprising combustion (A), oxychlorination (B) and calcining (C) steps, in which at least one chlorinating agent (conduit 19), at least one oxygen-containing gas (conduit 18), and water (conduit 20) are introduced into the oxychlorination step such that the H.sub.2 O/HCl molar ratio is 3 to 50, the oxychlorination step being carried out in the presence of an oxychlorination gas containing less than 21% of oxygen and at least 50 ppm by weight of chlorine (based on HCl), and at a temperature of 350-600.degree. C.
Abstract translation:本发明涉及用于再生用于生产芳族化合物,特别是用于重整的催化剂的方法,其包括燃烧(A),氧氯化(B)和煅烧(C)步骤,其中至少一种氯化剂(导管19) 将至少一种含氧气体(导管18)和水(导管20)引入氧氯化步骤,使得H 2 O / HCl摩尔比为3至50,氧氯化步骤在氧氯化气体存在下进行 含有少于21%的氧和至少50重量ppm的氯(基于HCl),并且在350-600℃的温度下
Abstract:
A catalyst regenerator (100) has a first section (110) and a second section (120) and is operated such that carbon from a carbon-contaminated catalyst (140) is converted to carbon monoxide in the first section (110) and that carbon monoxide is converted to carbon dioxide in the second section (120). The residence time of the oxygen-containing gas in the first and second sections (110, 120) is regulated in preferred configurations by the shape (e.g., diameter) of the first and second sections (110, 120).
Abstract:
Deactivation of a zeolite catalyst during its use to catalyse the oligomerisation of olefins, is often believed to be a result of the formation of high boiling polymers as by-products. These by-products can remain on the catalyst and undergo further conversion to higher molecular weight polymers, which resemble heavy tars and in some cases even have the appearance of coke-like material. These materials can coat the catalyst particles and plug pores in the catalyst, thereby causing catalyst deactivation. The invention relates to an improved method for regenerating such a catalyst.
Abstract:
A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.
Abstract:
A process for catalyst regeneration is presented. The process regenerates a catalyst in a paraffin dehydrogenation process, where the reaction is endothermic. The regeneration process provides the heat for the process through heating the catalyst and removes the need for a charge heater to the dehydrogenation reactor, which in turn eliminates high temperature thermal residence time which eliminates thermal cracking of the feed and improves the overall product selectivity. In addition, plot area, equipment costs and operating complexity are reduced.
Abstract:
The invention pertains to a process for combusting coke of a coke-containing FCC catalyst in a regeneration unit of a FCC unit having the introduction of oxygen-containing gas through a gas-transport unit into the regeneration unit and combusting the coke by means of an oxygen-containing gas, in which the oxygen-containing gas is cooled in a cooling unit before it is brought in contact with the coke-containing FCC catalyst. The invention further relates to an apparatus for performing said process.