摘要:
A method of modifying properties of intrinsic tissue of an organ is provided. The method includes providing an organ, where a first electrode is disposed proximal to the organ first end. The first electrode has a surface area and insulator. A second electrode is disposed opposite the first electrode, where the organ is disposed between the first electrode and the second electrode. The second electrode has surface area and surface insulator. An organ-shaping device is provided that is disposed on the organ between the electrodes, where the organ-shaping device deforms the organ middle section along at least one lateral direction between the electrodes. An electric current is provided between the first second electrodes, where a current density gradient is provided by the electrode surface areas and the deformed organ middle section, and the properties of the intrinsic muscle tissue are modified according to the current density gradient.
摘要:
A hearing aid apparatus is disclosed that employs both an omnidirectional microphone and at least one directional microphone of at least the first order. The electrical signals output from the directional microphone are supplied to an equalization amplifier which at least partially equalizes the amplitude of the low frequency electrical signal components of the electrical signal with the amplitude of the mid and high frequency electrical signal components of the electrical signals of the directional microphone. A switching circuit accepts the signals output from both the omnidirectional microphone and the directional microphone. The switching circuit connects the signal from the omnidirectional microphone to an input of a hearing aid amplifier when the switching circuit is in a first switching state, and connects the output of the equalization circuit to the hearing aid amplifier input when the switching circuit is in a second switching state. The switching circuit may be automatically switched in response to sensed ambient noise levels.
摘要:
A thin diaphragm for contacting an individual's tympanic membrane is sufficiently stiff and flexible to vibrate in response to audio frequencies so as to augment or over-ride the displacement of the individual's tympanic membrane in order to increase the acoustic efficiency of the tympanic membrane at all frequencies but particularly above 1000 Hz so as to improve mild hearing loss.
摘要:
A hearing aid apparatus is disclosed that employs both an omnidirectional microphone and at least one directional microphone of at least the first order. The electrical signals output from the directional microphone are supplied to an equalization amplifier which at least partially equalizes the amplitude of the low frequency electrical signal components of the electrical signal with the amplitude of the mid and high frequency electrical signal components of the electrical signals of the directional microphone. A switching circuit accepts the signals output from both the omnidirectional microphone and the directional microphone. The switching circuit connects the signal from the omnidirectional microphone to an input of a hearing aid amplifier when the switching circuit is in a first switching state, and connects the output of the equalization circuit to the hearing aid amplifier input when the switching circuit is in a second switching state. The switching circuit may be automatically switched in response to sensed ambient noise levels.
摘要:
The invention provides a system and method for achieving the cosmetically beneficial effects of shrinking collagen tissue in the dermis in an effective, non-invasive manner, which leaves the outer layer of skin intact and undamaged. One embodiment of the invention provides electromagnetic energy to the skin of a patient. The device includes a carrier and an array of electrodes on the carrier. A microporous pad on the carrier overlies the array of electrodes, forming an interior chamber to contain an electrically conductive material. The microporous pad is adapted to contact a patient's skin and ionically transport the applied electromagnetic energy to ohmically heat dermal tissue beneath the epidermal skin region. The shape of the carrier may differ to match different skin topographies and the electrodes may be sized to extend into tissue to heat a dermal skin region.
摘要:
A hearing aid apparatus is disclosed that employs both an omnidirectional microphone and at least one directional microphone of at least the first order. The electrical signals output from the directional microphone are supplied to an equalization amplifier which at least partially equalizes the amplitude of the low frequency electrical signal components of the electrical signal with the amplitude of the mid and high frequency electrical signal components of the electrical signals of the directional microphone. A switching circuit accepts the signals output from both the omnidirectional microphone and the directional microphone. The switching circuit connects the signal from the omnidirectional microphone to an input of a hearing aid amplifier when the switching circuit is in a first switching state, and connects the output of the equalization circuit to the hearing aid amplifier input when the switching circuit is in a second switching state. The switching circuit may be automatically switched in response to sensed ambient noise levels.
摘要:
A method of modifying properties of intrinsic tissue of an organ is provided. The method includes providing an organ, where a first electrode is disposed proximal to the organ first end. The first electrode has a surface area and insulator. A second electrode is disposed opposite the first electrode, where the organ is disposed between the first electrode and the second electrode. The second electrode has surface area and surface insulator. An organ-shaping device is provided that is disposed on the organ between the electrodes, where the organ-shaping device deforms the organ middle section along at least one lateral direction between the electrodes. An electric current is provided between the first second electrodes, where a current density gradient is provided by the electrode surface areas and the deformed organ middle section, and the properties of the intrinsic muscle tissue are modified according to the current density gradient.