Abstract:
A method and system for adjusting the brightness and contrast of a digital pulse-width modulated display without scaling the input image data. Brightness is adjusted by changing the duty cycle of a displayed pixel either by altering the bit display durations, or by turning the pixel on during blanking periods 36. The contrast ratio may be altered by changing the display duration of at least one of the MSBs differently than the display duration of at least one of the LSBs. Contrast may be increased by extending the MSB display periods 50 and shortening the LSB display periods 52. Contrast may be decreased by shortening the MSB display periods 56 and extending the LSB display periods 58. The color tint of the displayed image may be altered by individually changing the brightness of the constituent colors.
Abstract:
A method and device for increasing the effective horizontal resolution of a display device. One embodiment forms a cardinal array of digital micromirror elements by staggering alternate rows in an array. According to a second embodiment, an ordinal pixel array 57, is converted to a cardinal pixel array, by grouping SLM elements 59, 61, 63, and 65 into a pixel block 58. All of the elements in a pixel block are controlled in unison such that the pixel block acts like a single pixel. Rows of pixel blocks 67 and 69 are offset to provide the effect of a cardinal array of pixels without the decrease in efficiency sometimes associated with cardinal pixel arrays.
Abstract:
A system (26) for stabilizing a video recording of a scene (20, 22, & 24) made with a video camera (34) is provided. The video recording may include video data (36) and audio (38) data. The system (26) may include source frame storage (64) for storing source video data (36) as a plurality of sequential frames. The system (26) may also include a processor (50) for detecting camera movement occurring during recording and for modifying the video data (36) to compensate for the camera movement. Additionally the system (26) may include destination frame storage (70) for storing the modified video data as plurality of sequential frames.
Abstract:
A line generator (31) for receiving fields of pixel data sampled from a video input signal and for generating additional lines of pixel data so that the display frames will have more lines than the fields. The line generator (31) has a motion detector (31a) that determines, on a pixel by pixel basis, whether some part of the current field is in motion. A motion signal from the motion detector (31a) is used to select between outputs of two or more pixel generators (31b, 31c). One of the pixel generators (31b) provides pixel values that are better suited for display when the image is not in motion. The other pixel generator (31c) provides pixel values that are better suited for display when the image is in motion.
Abstract:
A method and structure for a display system having multiple spatial light modulators (SLMs) (16), each of which contributes an image of one color that is perceived by the viewer as a combined image. The SLMs (16) have more rows and columns of pixel elements (42) than rows or columns of pixel data to be displayed. A window of "active" pixel elements (42) can be shifted up and down or right and left by selecting which pixel elements (42) are to receive data. The addressing circuit (31, 31a, 35, 35a) of each SLM 16 can be controlled so as to accomplish this shifting.
Abstract:
A motion adaptive method for vertically scaling an image. The image data is analyzed to obtain a motion magnitude value for each pixel (31). The pixel data is then processed with two scaling processes (35, 36), performed in parallel. One scaling process is better suited for low motion images and the other is better suited for high motion images. The motion magnitude value is used to select between or combine (38) the pixel data outputs of the two scaling processes (35, 36).
Abstract:
This invention is a manner of control of the addresses of memory accesses. The data processing device of this invention includes a memory, a control circuit, a guide table and an address generating circuit. The control circuit receives a packet transfer request and packet transfer parameters. The packet transfer parameters include a start address, a number of guide table entries and a table pointer. The guide table includes guide table entries, each guide table entry having an address value and dimension values defining a block of addresses. The table pointer initially points to a first guide table entry in the guide table. The address generating circuit forms a set of block of addresses for memory access corresponding to each guide table entry, having a start address from a predetermined combination of the start address and the address value of the guide table entry. The block of addresses are formed from the dimension values. Following the memory accesses, the address generating circuit updates the table pointer to point to a next entry in the guide table. The address generating circuit may optionally form the predetermined combination of starting address and address value of guide table entry by adding the address value to the prior block starting address or by adding the guide table value to the starting address. The memory access may be a memory read from the block of addresses or a memory write to the block of addresses. In the preferred embodiment, memory, a data processor and a data transfer controller performing the above memory accesses is constructed in a single semiconductor chip. The data transfer controller may access external memory in the same manner as on-chip memory.
Abstract:
A method and apparatus for synchronizing display timing in a digital television system with a pixel addressable display having a color wheel is disclosed. The display timing circuit 22 includes phase comparator 40, for comparing the phase of a wheel index signal generated by a color wheel 20 with the phase of a frame synchronization signal indicating that a complete frame is ready to be displayed. Display timing circuit 22 further comprises a color wheel synchronization generator 42 which generates a color wheel synchronization signal in response to a phase difference value produced by phase comparator 40. The color wheel synchronization signal is used to increase, decrease, or maintain the speed of color wheel 20 to achieve a known phase relationship between the frame synchronization signal and the wheel index signal. Display timing circuit 22 further comprises a clock generator applicable to generate a display master clock signal having a known frequency relation to the wheel index signal.
Abstract:
A system (30) for packing data into a video processor is provided. System (30) comprises demultiplexer (32), first and second first in-first out buffer memories (34) and (36), and multiplexer (38). Demultiplexer (32) divides a field of video data into first and second parts (42) and (44). First and second parts (42) and (44) are stored in first first in-first out buffer memories (34) and (36), respectively. Multiplexer (38) combines one line from first first in-first out buffer memory (34) with one line from second first in-first out buffer memory (36) to form a single line for processing.
Abstract:
A visual information system to capture an input image using a camera 22, manipulate the image using processor 28, and project the processed image using optics 33 to superimpose the processed image on the actual object being observed by a viewer. Processing is done in real-time to allow the viewer to see both the actual and processed images while the viewer moves and changes viewing angles. Areas of interest in the displayed image may be highlighted or include graphical information for the viewer.