摘要:
The present invention relates to slow-crystallizing polyethylene terephthalate resins that possess a significantly higher heating crystallization exotherm peak temperature (TCH) as compared with those of conventional antimony-catalyzed polyethylene terephthalate resins. The polyethylene terephthalate preforms of the present invention, which possess improved reheating profiles, are especially useful for making polyester bottles that have exceptional clarity and that retain acceptable dimensional stability upon being hot-filled with product at temperatures between about 195° F. and 205° F.
摘要:
The invention is a polymer resin that includes between about 20 and 200 ppm of an inert particulate additive, preferably selected from the group consisting of surface-modified talc and surface-modified calcium carbonate. The polymer resin is capable of being formed into low-haze, high-clarity bottles and films possessing reduced coefficient of friction.
摘要:
The invention is a novel method for the late introduction of additives into polyethylene terephthalate. The method employs a reactive carrier that functions as a delivery vehicle for one or more additives. The reactive carrier reacts with the polyethylene terephthalate, thereby binding the reactive carrier in the polyethylene terephthalate resin and preventing the emergence of the reactive carrier and additives from the polyethylene terephthalate during subsequent thermal processing.
摘要:
The present invention relates to slow-crystallizing, titanium-catalyzed polyethylene terephthalate resins that are useful for making high-strength, high-clarity bottles that possess improved resistance to stress cracking and thermal creep. The polyethylene terephthalate resins possess improved reheating profiles and are especially useful for making polyester articles that have exceptional clarity, dimensional stability, and thermal stability.
摘要:
The present invention relates to slow-crystallizing, titanium-catalyzed polyethylene terephthalate resins that are useful for making high-strength, high-clarity bottles that possess improved resistance to stress cracking and thermal creep. The polyethylene terephthalate resins possess improved reheating profiles and are especially useful for making polyester articles that have exceptional clarity, dimensional stability, and thermal stability.
摘要:
The present invention relates to titanium-catalyzed polyethylene terephthalate resins that are capable of being formed into articles (e.g., carbonated soft drink and water bottle preforms) at reduced injection-molding cycle times. In particular, the titanium-catalyzed polyethylene terephthalate resins of the present invention can be formed into carbonated soft drink bottle preforms at reduced injection-molding cycle times to yield high-clarity, carbonated soft drink bottles that possess satisfactory resistance to stress cracking and thermal creep.
摘要:
The invention embraces polyester resins and containers that include surface-modified talc. The invention also embraces a method for the late introduction of surface-modified talc via a reactive carrier to achieve a polyester resin that is capable of being formed into low-haze, high-clarity bottles possessing reduced coefficient of friction.
摘要:
The present invention is a method of preparing a high molecular weight copolyester bottle resin that has excellent melt processing characteristics. The method includes the steps of reacting a diacid or diester component and a diol component to form modified polyethylene terephthalate, wherein diol component is present in excess of stoichiometric proportions. Together, the diacid or diester component and the diol component must include at least 7 percent comonomer. The remainder of the diacid component is terephthalic acid or dimethyl terephthalate and the remainder of the diol component is ethylene glycol. The modified polyethylene terephthalate is copolymerized in the melt phase to an intrinsic viscosity of between about 0.25 dl/g and 0.40 dl/g to thereby form a copolyester prepolymer. Thereafter the copolyester prepolymer is polymerized in the solid phase to form a high molecular weight bottle resin that has an intrinsic viscosity of at least about 0.70 dl/g, and a solid phase density of less than 1.413 g/cc.
摘要:
The invention embraces polyester resins and containers that include surface-modified talc. The invention also embraces a method for the late introduction of surface-modified talc via a reactive carrier to achieve a polyester resin that is capable of being formed into low-haze, high-clarity bottles possessing reduced coefficient of friction.
摘要:
The invention embraces polymer resins, such as polyethylene terephthalate resin, that includes surface-compatibilized alumina. The invention also embraces methods of making polyethylene terephthalate resins that are capable of being formed into low-haze, high-clarity articles possessing reduced coefficient of friction.