Abstract:
An olefin polymerization process wherein monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The product slurry is exposed to a pressure drop in a flash zone, producing a second slurry and vaporized diluent. The vaporized diluent produced in said flash chamber is condensed by heat exchange, without compression.
Abstract:
An olefin polymerization process and apparatus wherein a fluid slurry comprising monomer, diluent and catalyst is circulated in a continuous loop reactor by two or more pumps. The process and apparatus allow operating the reaction at significantly higher solids content in the circulating fluid slurry. In a preferred embodiment, the fluid slurry is circulated by two impellers arranged so that the downstream impeller benefits from the rotational energy imparted by the upstream impeller. An olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation has improved efficiencies, particularly in larger-volume reactors.
Abstract:
An olefin polymerization process and apparatus wherein a fluid slurry comprising monomer, diluent and catalyst is circulated in a continuous loop reactor by two or more pumps. The process and apparatus allow operating the reaction at significantly higher solids content in the circulating fluid slurry. In a preferred embodiment, the fluid slurry is circulated by two impellers arranged so that the downstream impeller benefits from the rotational energy imparted by the upstream impeller. An olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation has improved efficiencies, particularly in larger-volume reactors.
Abstract:
A microsystem for determining clotting time of blood and a low-cost, single-use device for use therein are provided wherein the device has no moving parts or expensive optical sensors or magnets. The device includes a microfluidic channel and a microsensor at least partially in fluid communication with the channel. By analyzing changes in the sensor as a drop of blood flows down the microfluidic channel, the time at which the blood clots can be determined.
Abstract:
An olefin polymerization process and apparatus wherein a fluid slurry comprising monomer, diluent and catalyst is circulated in a continuous loop reactor by two or more pumps. The process and apparatus allow operating the reaction at significantly higher solids content in the circulating fluid slurry. In a preferred embodiment, the fluid slurry is circulated by two impellers arranged so that the downstream impeller benefits from the rotational energy imparted by the upstream impeller. An olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation has improved efficiencies, particularly in larger-volume reactors.
Abstract:
An olefin polymerization process wherein monomer, at least one olefin comonomer different from the olefin monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The continuous product allows operating the reaction at significantly higher solids content in the circulating slurry.
Abstract:
A polymerization loop reactor including a loop reaction zone, a continuous takeoff, and a fluid slurry disposed in the reaction zone. A generally cylindrical wall defines the loop reaction zone. The length of the loop reaction zone and the nominal outside diameter of the generally cylindrical wall define a length/diameter ratio greater than 250. The reactor can be charged with a fluid slurry including an olefin monomer reactant, solid olefin polymer particles, and a liquid diluent. The concentration of the solid olefin polymer particles in the slurry can be greater than 40 weight percent based on the weight of polymer particles and the weight of liquid diluent. Also disclosed is a polymerization process carried out by polymerizing, in the loop reaction zone of a reactor as defined above, at least one olefin monomer in a liquid diluent to produce a fluid slurry as defined above.
Abstract:
An olefin polymerization process wherein monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The continuous product allows operating the reaction at significantly higher solids content in the circulating slurry. In a preferred embodiment, the slurry is heated in a flash line heater and passed to a high pressure flash where a majority of the diluent is separated and thereafter condensed by simple heat exchange, without compression, and thereafter recycled. Also an olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation.
Abstract:
An olefin polymerization process and apparatus wherein a fluid slurry comprising monomer, diluent and catalyst is circulated in a continuous loop reactor by two or more pumps. The process and apparatus allow operating the reaction at significantly higher solids content in the circulating fluid slurry. In a preferred embodiment, the fluid slurry is circulated by two impellers arranged so that the downstream impeller benefits from the rotational energy imparted by the upstream impeller. An olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation has improved efficiencies, particularly in larger-volume reactors.